

Carmanhall Road SHD at the Former Avid Technology International Site, Carmanhall Road, Sandyford Industrial Estate, Dublin 18

Stage 3: Planning Application to An Bord Pleanala Infrastructure Report

Atlas GP Ltd.

Project reference: PR-461030

February 2021

Quality information

Prepared by	Checked by	Verified by	Approved by
Dry Myse	Clockafh Holim	Brendon Mitchell	Clockafh Holim
Dara Magee Graduate Engineer	Clodagh Holmes Principal Engineer	Brendan Mitchell Associate Director	Clodagh Holmes Principal Engineer

Associate Director

Principal Engineer

Principal Engineer

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	17.08.2020	Pre-App Stage 2 Issue	MD	Michael Dunne	Regional Director
1	17.02.2021	Stage 3 Planning Issue	СН	Clodagh Holmes	Principal Engineer

Distribution List

# Hard Copies	PDF Required	Association / Company Name
10	Yes	Hughes Planning & Development Consultants

Prepared for:

Atlas GP Ltd.

Prepared by:

Dara Magee Graduate Engineer T: +353 (0)1 238 3100 M: +353 87 431 6228 E: Dara.Magee@aecom.com

AECOM Ireland Limited 4th Floor Adelphi Plaza Georges Street Upper Dun Laoghaire Co. Dublin A96 T927 Ireland

T: +353 1 238 3100 aecom.com

© 2021 AECOM Ireland Limited. All Rights Reserved.

This document has been prepared by AECOM Ireland Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1.	Introdu	uction	6
2.	An Bo	rd Pleanála Opinion Case ABP-307978-20	8
3.	Site In	vestigation	8
4.	Surfac	e Water Drainage	9
	4.1	Existing Surface Water Drainage	9
	4.2	Proposed Surface Water Drainage	9
	4.3	SuDS (Sustainable urban Drainage Systems)	10
	4.3.1	Green Roofs	10
	4.3.2	Swales	11
	4.3.3	Bioretention	12
	4.3.4	Permeable Paving	13
	4.3.5	Storage Tank (Arch Structure – Stormtech)	13
	4.3.6	Petrol Interceptor	14
	4.4	Compliance with Greater Dublin Strategic Drainage Study	15
	4.4.1	Interception & Treatment Volume Provision	17
	4.4.2	Interception & Treatment Commentary	19
	4.5	Flow Exceedance Route	20
	4.6	Engagement with Dún Laoghaire-Rathdown County Council	20
5.	Waste	water Drainage	21
	5.1	Engagement with Irish Water	21
	5.2	Proposed Wastewater Network	22
6.	Water	Supply Layout	23
	6.1	Engagement with Irish Water	23
	6.2	Proposed Water Supply	23
Appen	dix A –	Site Investigation	24
Appen	dix B –	DLRCC Existing Records	25
Appen	dix C –	Utility Survey	26
Appen	dix D –	Surface Water Audit (Stage 1)	27
Appen	dix E –	Qbar Calculation	28
Appen	dix F -	Met Éireann Rainfall Data	29
Appen	dix G –	Surface Water Network Calculations	30
Appen	dix H –	Bauder XF301 Sedum System & Bauder DSE60 Drainage Layer	31
Appen	dix I –	Stormtech Tank Details	32
Appen	dix J –	SuDS Manual Drainage Maintenance Checklist	33
Appen	dix K –	Irish Water Confirmation of Feasibility	34
Appen	dix L -	Irish Water Statement of Design Acceptance	35
Appen	dix M -	Wastewater Network Calculations	36
Appen	dix N -	Tri Partite Response to An Bord Pleanála	37
Appen	dix O –	Diversion Confirmation of Feasibility	38

Figures

Figure 1.1: Site Location	6
Figure 4.1: Drainage & Water Records (Source: DLRCC)	
Figure 4.2: Green Roof Layers (Extract form CIRIA C753 SuDS Manual)	
Figure 4.3: Dry Swale (Extract form CIRIA C753 SuDS Manual)	12
Figure 4.4: Bioretention Layers (Extract form CIRIA C753 SuDS Manual)	12
Figure 4.5: Permeable Paving System – No Infiltration (Extract form CIRIA C753 SuDS Manual)	13
Figure 4.6: Stormtech Standard Detail (Extract from Stormtech MC-4500 Leaflet)	14

Figure 4.7: Typical Petrol Interceptor Detail (Extract from Ciria C753 SuDS Manual)	14
Figure 5.1: Existing Civil Infrastructure. (Full map in Appendix A)	21

Tables

Table 4.1: Green Roof Provision	. 11
Table 4.2: GDSDS Table 6.3	. 15
Table 4.3: Roof - Interception Volume	. 17
Table 4.4: Roof - Treatment Volume	. 18
Table 4.5: Road - Treatment Volume	. 18
Table 4.6: Steps Area - Treatment Volume	. 18
Table 4.7: Overall Site - Interception & Treatment Volume	. 18

1. Introduction

AECOM have been appointed by Atlas GP Ltd. to undertake the infrastructure design, in support of a Strategic Housing Development (SHD) at the former Avid Technology International Site, Carmanhall Road, Sandyford Industrial Estate, Dublin 18.

The site is located within the jurisdiction of Dún Laoghaire-Rathdown Council (DLRCC). The application site boundary measures 1.03 ha and the current ownership boundary is 0.73 ha. The area to remain private, not to be Taken In Charge by DLRCC, is 0.67 ha.

The current brownfield site was previously occupied by a commercial building which has now been demolished. The site is bounded to the east by Blackthorn Road, to the north by Carmanhall Road and to the south and west by existing commercial buildings. Refer to Figure 1.1 for the site location.

Permission was previously granted by An Bord Pleanála in April 2019, under a separate application, Reg. Ref. PL06D.303467, for the construction of student accommodation on the site. This was granted under the Strategic Housing Development (SHD) process.

Hughes Planning & Development Consultants submitted a Section 247 planning pack to DLRCC, PAC Number PAC/SHD/91/20. The Section 247 pre-planning meeting took place, via Microsoft Teams, on 30th April 2020 with DLRCC.

Figure 1.1: Site Location

The full development description is as follows;

(i) construction of a Build-To-Rent residential development within a new part six, part eight, part nine, part eleven storey rising to a landmark seventeen storey over basement level apartment building (40,814sq.m) comprising 428 no. apartments (41 no. studio, 285 no. one-bedroom, 94 no. two-bedroom & 8 no. three-bedroom units) of which 413 no. apartments have access to private amenity space, in the form of a balcony or lawn/terrace, and 15 no. apartments have access to a shared private roof terrace (142sq.m) at ninth floor level;

(ii) all apartments have access to 2,600sq.m of communal amenity space, spread over a courtyard at first floor level and roof terraces at sixth, eighth and ninth floor levels, a 142sq.m resident's childcare facility at ground floor level, 392sq.m of resident's amenities, including concierge/meeting rooms, office/co-working space at ground floor level and a meeting/games room at first floor level, and 696sq.m of resident's amenities/community infrastructure inclusive of cinema, gym, yoga studio, laundry and café/lounge at ground floor level. The café/lounge will primarily serve the residents of the development and will be open for community use on a weekly/sessional basis;

(iii) provision of 145 no. vehicular parking spaces (including 8 no. mobility parking spaces, 2 no. club-car spaces and 44 no. electric charging spaces), 5 no. motorcycle parking spaces, bin stores, plant rooms, switch room and 2 no. ESB sub-stations all at ground floor level; provision of bicycle parking (752 no. spaces), plant and storage at basement level; permission is also sought for the removal of the existing vehicular entrance and construction of a replacement vehicular entrance in the north-western corner of the site off Carmanhall Road;

(iv) provision of improvements to street frontages to adjoining public realm of Carmanhall Road & Blackthorn Road comprising an upgraded pedestrian footpath, new cycling infrastructure, an increased quantum of landscaping and street-planting, new street furniture inclusive of bins, benches and cycle parking facilities and the upgrading of the existing Carmanhall Road & Blackthorn Road junction through provision of a new uncontrolled pedestrian crossing; and,

(v) All ancillary works including provision of play equipment, boundary treatments, drainage works - including SuDS drainage, landscaping, lighting, rooftop telecommunications structure and all other associated site services, site infrastructure and site development works. The former Avid Technology International buildings were demolished on foot of Reg. Ref. D16A/0158 which also permitted a part-five rising to eight storey apartment building. The development approved under Reg. Ref. D16A/0158, and a subsequent part-seven rising to nine storey student accommodation development permitted under Reg. Ref. PL06D.303467, will be superseded by the proposed development.

2. An Bord Pleanála Opinion Case ABP-307978-20

Following the Pre-Application meeting held with An Bord Pleanála (ABP), via MS Teams meeting on 23rd November 2020, no specific drainage items were raised in the Board's Opinion. In the minutes provided by ABP, Item 5 covers potential "drainage matters".

ABP sought further discussions on

- Irish Water Feasibility
- Surface Water.

In this regard, AECOM have continued to engage with both Irish Water and Dún Laoghaire-Rathdown County Council in order to the develop the water supply and drainage design proposed. Further details on these discussions are provided in Section 4 - 6 below.

3. Site Investigation

Site Investigation carried out by IGSL, Report No. 22455, (see Appendix A of this report) revealed there is no infiltration present on the site – two infiltration tests revealed zero infiltration. These tests were carried out in the northwest and southeast of the site, refer to the Site Plan in Appendix VII of IGSL Report No. 22455.

The site Investigation also revealed a high water table is present at the site. The highest groundwater table was recorded as 1.63 - 2.5 m bgl (below ground level), in June 2020, four months after installation of the standpipes. It is proposed to collect groundwater in filter trenches adjacent to the proposed basement and retaining structures, before pumping to the surface water network.

Based on these findings, it is considered that there is a risk of the water table rising above the invert level of the proposed attenuation tanks on site. AECOM have approached Stormtech to enquire about the potential for using Stormtech tanks within a water table and if there are any mitigation measures that would need to be considered to avoid uplift and/or water infiltration into the tanks. Stormtech representatives recommend additional foundation stone coupled with a layer of geogrid centred in the foundation stone for anti-buoyancy measures (refer to Appendix I). Additionally, Stormtech representatives advised that a bentonite impermeable liner may be used to prevent water ingress into the tank and to provide sufficient durability such that the integrity of the liner will be maintained over the life of the tank.

The permeable paving and swales are proposed be lined with an impermeable membrane, due to the lack of infiltration available on the site and to prevent groundwater ingress. Other drainage elements will be further assessed at detail design stage to identify any potential risk of uplift and any required mitigation measured e.g. oil separators, manholes etc.

4. Surface Water Drainage

4.1 Existing Surface Water Drainage

Records received from DLRCC (see Appendix A), indicate there is an existing 450mm diameter public surface water sewer located in Carmanhall Road, confirmed by a Utility Survey (see Appendix C). A separate existing 375mm public surface water sewer is located in Blackthorn Avenue, which then turns 90° to continue along Burton Hall Road. The site is currently connected to a manhole on Blackthorn Avenue.

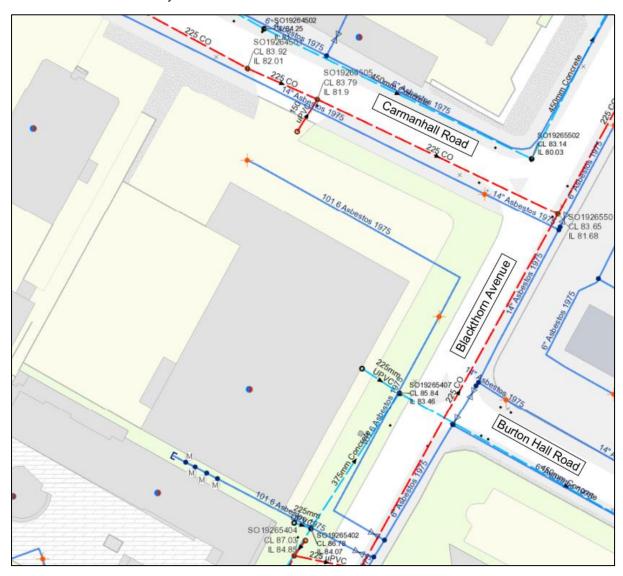


Figure 4.1: Drainage & Water Records (Source: DLRCC)

4.2 **Proposed Surface Water Drainage**

It is proposed to discharge surface water from the development to the existing 450mm diameter concrete surface water sewer in Carmanhall Road, via a new connection to the existing manhole. It is proposed to decommission the existing connection. The proposed storage network to serve the proposed development has been designed and modelled, using Innovyze Microdrainage, for the 1 in 100-year storm event, with an allowance of 20% for climate change, as per the Greater Dublin Strategic Drainage Study (GDSDS).

2 no. Stormtech attenuation tanks are proposed, providing a storage volume of 286 m³. AECOM have modelled the proposed surface water drainage network, in order to achieve no flood risk within the site. Refer to AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-0502 for the proposed network.

The implementation of the proposed Green Roof system provides additional storage volume throughout the site. However, this storage is not included in the attenuation volume as the green roofs may be saturated at the time of any given storm and flow controls are not proposed on the green roofs. Similarly, other SuDS measures provide storage but are not used in storage calculations.

Soil class 4, which corresponds to a soil index of 0.47 (site investigation borehole logs classify the underlying soil as "stiff to very stiff brown and grey sandy gravelly clay"), was used to calculate Qbar. The associated Qbar for the 0.73 ha site was calculated as 4.91 l/s by JBA Consulting in the Stage 1 Surface Water Audit (see Appendix D), using Met Éireann rainfall data. AECOM had previously calculated 5.26 l/s using a SAAR (standard annual average rainfall) value of 985 mm, taken from HR Wallingford. This calculation is available in Appendix E.

The discharge rate of 4.9 l/s, calculated by JBA Consulting in the Surface Water Audit, has been used in the modelling of the surface water network and sizing of attenuation tanks. The proposed maximum discharge rate is significantly lower than the current maximum discharge rate of runoff leaving the site, as it is currently 100% impermeable and discharging runoff unattenuated.

The rainfall inputs to the model were taken from Met Éireann rainfall data; M5-60 of 17.8 and a ratio, R, of 0.275. This data is attached in Appendix F. The surface water network calculations are provided in Appendix G.

It is proposed that the public footpaths, which are outside the north and east perimeter of the proposed building, will drain to the proposed swale and landscaping. It is proposed to drain the additional runoff from the widened public footpath and new cycle path proposed on the eastern side of Blackthorn Road to the existing 450 mm diameter surface water sewer via the existing gully network on Carmanhall Road/Blackthorn Road junction. This is discussed further in the following section.

4.3 SuDS (Sustainable urban Drainage Systems)

The proposed development has been assessed in relation to Sustainable Urban Drainage Systems (SuDS) in accordance with the guidelines of the GDSDS and the SuDS Manual CIRIA C753. The aim of the proposed drainage system is to replicate the natural characteristics of rainfall runoff, minimising the environmental impact from rainfall events by reducing the runoff leaving the site for small rainfall events. Refer to AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-0501 for the proposed SuDS measures.

4.3.1 Green Roofs

Green roofs provide ecological, aesthetic and amenity benefits and intercept and retain rainfall, at source, reducing the volume of runoff and attenuating peak flows. Green roofs absorb most of the rainfall that they receive during normal rainfall events, although they will only contribute to attenuation of flows for larger events.

Additionally, green roofs treat surface water through removal of atmospherically deposited urban pollutants. Finally, green roofs may reduce heating (by adding mass and thermal resistance value) and cooling (by evaporative cooling) loads on a building.

The performance of green roofs in the summer is significant in preventing runoff from normal rainfall events due to high levels of evapotranspiration. Green roofs do not provide the same storage in winter as they tend to be saturated for a greater portion of time.

67% of the total roof area is proposed as green roof, in accordance with the County Development Plan (2016-2022). Refer to AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-0501 & PR461030-ACM-XX-00-DR-CE-10-0503 for green roof provision and buildup. Both extensive and intensive green roofs are proposed. Refer to Table 4.1 for a summary of the green roof provision.

Extensive green roofs allow low growing, low maintenance plants consisting of self-sustaining mosses, sedums, succulents, herbs or grasses over a drainage layer and waterproofing membrane. Extensive roofs are usually only accessed for maintenance. Extensive green roofs typically have a 20-150 mm growing medium.

Intensive green roofs typically have a growing medium greater than 150 mm, allowing for a wider array of planting possibilities, including; grasses, shrubs and trees, as ground cover or within planters. Intensive green roofs are typically accessible as they require a higher level of maintenance.

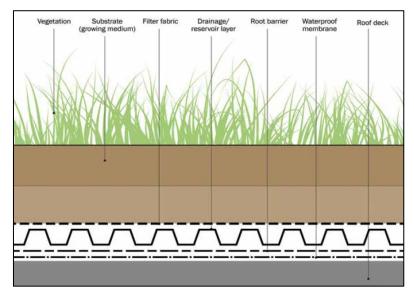


Figure 4.2: Green Roof Layers (Extract form CIRIA C753 SuDS Manual)

GREEN ROOF PROVISION							
ROOF	TOTAL ROOF AREA (m ²) *			ТҮРЕ			
1. 10 th FLOOR	547.6	467.0	85%	SEDUM			
2. 11 th FLOOR	387.2	350.0	90%	SEDUM			
3. 17 th FLOOR	643.3	560.1	87%	SEDUM			
4. 9 th FLOOR	304.5	140.5	46%	PLANTER			
5. 9 th FLOOR	85.5	75.6	88%	SEDUM			
6. 6 th FLOOR	533.2	294.0	55%	PLANTER			
7. 8 th FLOOR	893.6	406.5	45%	PLANTER			
8. 9 th FLOOR	165.6	98.6	60%	PLANTER			
TOTAL	3560.4	2392.3	67%	n/a			

Table 4.1: Green Roof Provision

* Excludes courtyard, balconies & private terraces, as agreed with DLRCC

4.3.2 Swales

300 mm wide dry swales are proposed to take runoff from the proposed private footpath, in order to provide treatment at these locations. A filter medium of prepared soil provides treatment and conveyance capacity. This overlays an underlain system which then drains to the proposed surface water sewer. This proposed measure will effectively filter pollutants from the first flush after a dry weather period. Overflow outlets ensure runoff does not back up and flood the surface during larger rainfall events. Refer to AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-0503 for further detail.

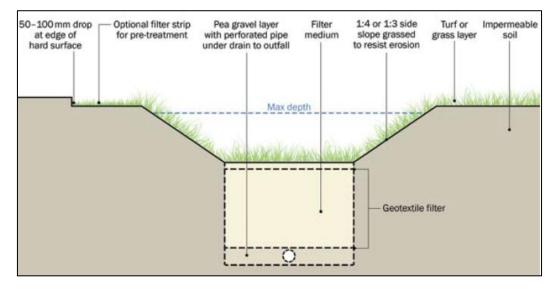


Figure 4.3: Dry Swale (Extract form CIRIA C753 SuDS Manual)

4.3.3 Bioretention

Bioretention provides treatment of stormwater and interception, through evapotranspiration and infiltration, if available. Runoff collected from the system is stored on the surface, referred to as the depth of extended detention (normally a maximum of 150 – 300 mm) before filtering through the vegetation and underlying soils. The proposed steps to the courtyard on first floor level are proposed to drain to the bioretention proposed, surrounding the steps. Refer to AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-0503 for further detail.

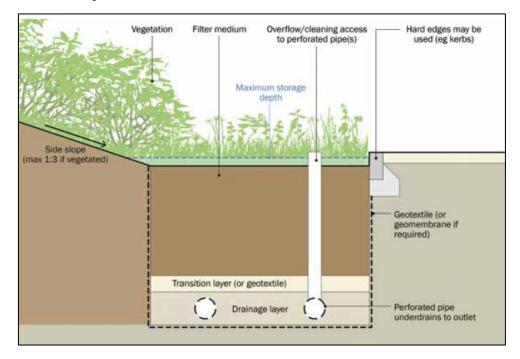


Figure 4.4: Bioretention Layers (Extract form CIRIA C753 SuDS Manual)

4.3.4 Permeable Paving

Porous surfacing (paving block or open graded material) which can treat rainwater, at source, and allow infiltration through to an underlying porous subbase where water can be stored within the voids of the subbase before being slowly released to the drainage collection system through natural flow via the porous medium. A tanked permeable paving system includes an impermeable geotextile at its base and includes an outlet to the surface water system. These systems will allow some form of storage for small rainfall events and can result in water evaporation and adsorption in small quantities, therefore there will be less run-off from these areas in small rainfall events thus mimicking the natural response for this catchment. As well as reducing the amount of run-off from the surface, permeable paving will slow down the rate of runoff from the pavement in extreme rainfall events contributing to attenuation of flows. In addition, permeable paving will increase the quality of water which is intercepted by the system through filtration, biodegradation, pollutant adsorption and settlement and retention of solids, also the reduction in peak flows to the outfall will enhance settlement and biodegradation of pollutants.

Permeable paving is proposed on the access road, outside of the under-croft car park. Based on a minimum depth of 350 mm stone layer beneath the proposed paving course and an area of 306 m², the storage provided by the permeable paving is 43 m³ (using a stone porosity of 40%).



Figure 4.5: Permeable Paving System – No Infiltration (Extract form CIRIA C753 SuDS Manual)

4.3.5 Storage Tank (Arch Structure – Stormtech)

The 2 no. 143 m³ attenuation tanks proposed are designed using the Stormtech MC-4500 system. An impermeable liner surrounding the tanks is proposed in order to protect the building's foundations. The Stormtech storage systems include a stone medium (the Stormtech chambers are surrounded by stone to manufacturer specification). Sediments are captured in the stone medium providing treatment by removing silts and some hydrocarbons from the runoff. Silt traps (catch-pits) manholes incorporating 500mm deep sumps will also be provided as further silt removing treatment measure in both the upstream and downstream manholes of the attenuation tanks. The total provided storage is 286 m³.

Refer to AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-0501 and PR461030-ACM-XX-00-DR-CE-10-0502 for the proposed surface water layout, and PR461030-ACM-XX-00-DR-CE-10-0504 for cross sections of the Stormtech attenuation tanks. Refer to Appendix I for Stormtech Tank details.

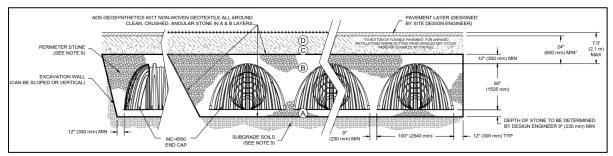


Figure 4.6: Stormtech Standard Detail (Extract from Stormtech MC-4500 Leaflet)

4.3.6 Petrol Interceptor

Petrol Interceptors are widely used to avoid and prevent hazardous chemical and petroleum by-products from entering watercourses and public sewers. As standard, petrol interceptors shall be positioned close to the potential pollution source (to minimise emulsification of oils and their coating of sediments) and upstream of the connection point to the public network, within the private boundary. Please refer to AECOM Drawing PR252947-ACM-XX-00-DR-CE-10-0502 for the proposed location. There are two classes of systems:

- Class 1 device means that the resultant effluent should contain 5mg/l hydrocarbon content or less under standard test conditions;
- Class 2 can contain up to 100mg/l in their discharge and are appropriate where drainage is to a foul sewer.

A Class 1 petrol interceptor is proposed in this instance.

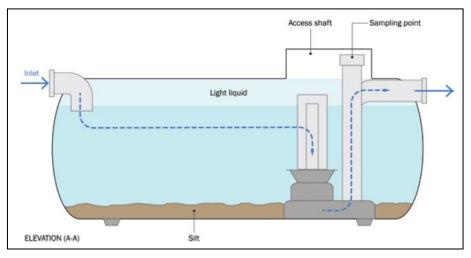


Figure 4.7: Typical Petrol Interceptor Detail (Extract from Ciria C753 SuDS Manual)

All SuDS components shall be constructed in accordance with CIRIA C768 – Guidance on the Construction of SuDS. Please refer to Appendix J for the Drainage Maintenance Checklist from the CIRIA SuDS Manual C753.

4.4 Compliance with Greater Dublin Strategic Drainage Study

Site investigation found infiltration is not present on the site. Therefore, in areas where interception (no runoff from the site for rainfall depths of 5mm – GDSDS) requirements are not achievable, treatment of runoff is satisfied in accordance with the GDSDS.

Table 4.2: GDSDS Table 6.3

Criteria	Sub- criterion	Return Period (Years)	Design Objective	Design Proposals
Criterion 1	1.1	<1	Interception storage of at least 5mm, and preferably 10mm, of rainfall where runoff to the receiving water can be prevented.	SuDS measures such as green roof, bioretention, swales and permeable paving have been proposed, where possible, to allow interception storage, through evapotranspiration. However, for areas of the site where these interception storage requirements are not satisfied, treatment storage shall be provided as per sub-criterion 1.2.
River Water Quality Protection	1.2	<1	Where initial runoff from at least 5mm of rainfall cannot be intercepted, treatment of runoff (treatment volume) is required. Retention pond (if used) to have minimum pool volume equivalent to 15mm rainfall.	Treatment volume will be provided through the proposed green roofs, bioretention, permeable paving, swales at or close to the source. The Stormtech attenuation tank's stone medium also provides a certain degree of treatment. Refer to AECOM Drawing No. PR461030-ACM-XX-00- DR-CE-10-0501. See treatment volume calculations in Table 4.4 - Table 4.7.
Criterion 2 River Regime Protection	2.1	1	Discharge rate equal to 1 year greenfield site peak runoff rate or 2 l/s/ha, whichever is the greater. Site critical duration storm to be used to assess attenuation storage volume.	Runoff from the site will be restricted to a maximum 4.9 I/s. This is based on a site area of 0.73 ha and a soil class of 4 (as site investigation revealed boulder clay). However, the 1 year peak runoff event will be further restricted due to the Hydrobrake's head/discharge relationship. It is noted that while the outflow will be set to the Qbar Rate, the outflow is also a function of head. The maximum flow rate is achieved only at the maximum head of water in the attenuation tank (and momentarily just before the vortex starts to form), while for less head of water in the tank (as in the case of the 1 year return period event) the discharge rate is a function of the head-discharge relationship of the Hydro-Brake (flow control) device. This ensures that an appropriate/reasonable discharge flow rate is achieved for each return period event.
	2.2	100	Discharge rate equal to 1 in 100 year greenfield site peak runoff rate. Site critical duration storm to be used to assess attenuation storage volume.	The overall discharge rate proposed for the site is 4.9 l/s, which is achieved for the 100 Year Return Period Events. For more details refer to Surface Water Drainage Reports in Appendix C.
Criterion 3 Level of Service	3.1	30	No flooding on site except where specifically planned flooding is approved. Summer design storm of	It is proposed that the Critical Duration Storm 100 Year Return Period event is fully contained within the attenuation tanks. No flooding occurs on site for any event up to the 100 Year event + 20% climate change.

Criteria	Sub- criterion	Return Period (Years)	Design Objective	Design Proposals
(flooding) for the site			15 or 30 minutes are normally critical.	A Flow Exceedance Route (see Section 4.5) for the case of 50% blockage at the Hydrobrake was examined and due to proposed levels and gullies, the associated flooding will flow out of the site onto Carmanhall Road. The Flow Exceedance Route is shown in PR461030- ACM-XX-00-DR-CE-10-0601.
	3.2	100	No internal property flooding. Planned flood routing and temporary flood storage accommodated on site for short high intensity storms. Site critical duration events.	It is proposed that the Critical Duration Storm 100 Year Return Period event is fully contained within the attenuation tanks. No flooding occurs on site for any event up to the 100 Year event + 20% climate change. The Flow Exceedance Route (see Section 4.5) for the case of 50% blockage at the Hydrobrake was examined and due to proposed levels, the associated flooding will flow out of the site onto Carmanhall Road. The Flow Exceedance Route is shown in PR461030-ACM-XX-00- DR-CE-10-0601. Site levels have been proposed to ensure that in the unlikely possibility that ponding occurs, it will be situated away from the building access points, bin store and substation & switch rooms.
	3.3	100	No internal property flooding. Floor levels at least 500mm above maximum river level and adjacent on- site storage retention.	No flooding occurs on site for any event up to and including the 100 Year event + 20% climate change. It is also noted that adjacent attenuation tanks have minimum 650 mm cover. Maximum water level within the proposed network is approx. 1 m below the proposed ground level. In the case of a 50% Hydrobrake blockage, the maximum water level within the network is approx. 0.15 m below the proposed ground level. Refer to Section 5 of the Flood Risk Assessment.
	3.4	100	No flooding of adjacent urban areas. Overland flooding managed within the development.	No flooding occurs on site for any event up to the 100 Year event + 20% climate change.
Criterion 4 River Flood Protection (Criterion 4.1, or 4.2 or 4.3 to be applied)	4.1	100	"Long-term" floodwater accommodated on site for development runoff volume which is in excess of the greenfield runoff volume. Temporary flood storage drained by infiltration on a designated flooding area brought into operation by extreme events only. 100 year, 6 hour duration storm to be used for assessment of the additional volume of runoff.	This sub-criterion is not applied. Only one of the three sub- criteria is required to be applied.

Carmanhall Road SHD at the Former Avid Technology International Site, Carmanhall Road, Sandyford Industrial Estate, Dublin 18

Criteria	Sub- criterion	Return Period (Years)	Design Objective	Design Proposals
	4.2 100 Infiltration storage provided equal in volume to "long term" storage. Usually designed to operate for all events. 100year, 6 hour duration storm to be used for assessment of the odditional volume of runoff.		provided equal in volume to "long term" storage. Usually designed to operate for all events. 100year, 6 hour duration storm to be used for	This sub-criterion is not applied. Only one of the three sub- criteria is required to be applied.
	4.3	100	Inaximum discharge rateof QBAR or 2 l/s/ha,whichever is the greater,for all attenuation storagewhere separate "long term"storage cannot betractided	A simulation for the surface water network was undertaken to ensure that all runoff from the site will be limited to 4.9 l/s (Qbar) and no flooding will occur. 2 no. attenuation tanks with total net storage capacity of 286 m ³ are provided within the site to ensure that no flooding occurs on site for the critical duration storm of the 1 in 100 year event plus 20% climate change allowance.

4.4.1 Interception & Treatment Volume Provision

The provided interception and treatment volume proposed for the roof area, the road and the steps area from the courtyard/podium are shown below in Table 4.3 - Table 4.6 The provided interception and treatment volume proposed for the overall site is shown below in Table 4.7. A sub-catchment assessment of interception & treatment, based on areas contributing to runoff, has been undertaken to ensure each sub-catchment of the site is receiving sufficient interception and/or treatment.

Building (Roof & private terraces, courtyard & balconies) - Interception					
Area Type (m²)	Area (m²)	Interception Required (m ³) *	Interception Provided (m ³) **		
Total Roof Area	5940	23.8	-		
Extensive	1515	-	7.6		
Intensive	1897	-	28.5		
Interception Provision:		23.8	36.0		

* Based on the first 5mm of rainfall over 80% of the total impermeable site area, as per the GDSDS,

** Based on an interception volume of 5mm for the extensive green roof, primary treatment is also provided.

Note:

- 5 mm of interception on extensive green roof is assumed during summer months, as per CIRIA SuDS Manual C753, Section 12.4.2.
- 15 mm of interception is assumed, based on the various case studies of Section 12.4.2 of the CIRIA SuDS Manual C753. These case studies are of a significantly lower substrate depth than the substrate depth proposed in this scenario.
- It is also noted that interception is most critical during summer months, as prolonged dry periods leave rivers most vulnerable to pollution, as flows are low and dilution is reduced.

Building (Roof & private terraces, courtyard & balconies) - Treatment					
Area Type (m²)	Area (m²)	Treatment Required (m ³) *	Treatment Provided (m ³) **		
Total Roof Area	5940	71.3	-		
Extensive	1515	-	12.7		
Intensive	1897	-	284.6		
Permeable Courtyard Paving	772	-	88.0		
Accessible Roof Permeable Paving	899	-	13.5		
Treatment Provision:		71.3	297.3		

Table 4.4: Roof - Treatment Volume

* Based on the first 15mm of rainfall over 80% of the total impermeable site area, as per the GDSDS,

** Based on respective areas and substrate/subbase depths and porosities as follows; 28 mm substrate depth of extensive green roof (Bauder XF301 Sedum System, 28 mm as specified on Bauder's website, see product datasheet in Appendix H) with 30% porosity, 500 mm intensive green roof planter substrate depth with 30% porosity, 440 mm sub base of permeable courtyard paving with 30% porosity and 50 mm bedding layer of Accessible Roof Permeable Paving with 30% porosity.

Note:

- The assumption of 30% porosity is based on Section 30.4.1 of the CIRIA SuDS Manual C753, for aggregates and clays.
- The Bauder DSE60 drainage layer (see Appendix H), which lies beneath the roof pavements and intensive green roof planters, provides 12 mm of treatment per m² as the layer is filled with mineral drain.

Table 4.5: Road - Treatment Volume	4.5: Road - Treatmen	nt Volume
------------------------------------	----------------------	-----------

Road - Treatment					
Road Area (m²) Treatment Required (m³) * Permeable Paving Area (m²) Treatment Provided (m³) ***					
460	5.5	306.0	42.8		

* Based on the first 15mm of rainfall over 80% of the total impermeable site area, as per the GDSDS,

** Based on a minimum depth of 350mm of stone media and a void ratio of 0.40.

Table 4.6: Steps Area - Treatment Volume

	Steps Area - Treatment				
Area (m²) Treatment Required (m³) * Bioretention Area (m²) Treatment Provided (m³) **					
Γ	329	3.9	74.0	3.7	

* Based on the first 15mm of rainfall over 80% of the total impermeable site area, as per the GDSDS,

** Based on 50 mm depth of extended detention over the respective area.

Table 4.7: Overall Site - Interception &	Treatment Volume
--	------------------

Overall Site - Interception & Treatment Provision					
Site Area (m²)Interception Required (m³)Interception Provided (m³)Treatment Required (m³)Treatment Provided (m³)					
6729	26.9	36.0	80.7	343.8	

4.4.2 Interception & Treatment Commentary

As noted above, based on Section 12.4.2 of the CIRIA SuDS Manual C753, during the summer months 5 mm of interception is provided for extensive green roof and 15 mm is provided for intensive green roofs. Therefore, all intensive green roof planters and extensive green roofs areas are meeting interception requirements for their respective plan areas.

Intensive green roof planters are proposed on the accessible roofs and are above the adjacent paving levels. Therefore, the associated runoff from the paving must receive sufficient treatment from its bedding layer and drainage layer. The GDSDS sets out a requirement of 15 mm of treatment volume for 80% of the paved area, therefore, 12 mm per m² of the paving area is required. 15 mm of treatment is provided in the 50 mm bedding layer, per m², as sediments and pollutants are filtered out. A further 12 mm per m² of treatment storage shall be provided in the drainage layer, which is filled with mineral drain A Bauder DSE60 drainage layer provides this volume, refer to Appendix H. (This additional treatment has been omitted from treatment calculations, treatment volume is only calculated based on the bedding layer and porosity. It is also noted that a certain amount of interception will take place in the permeable paving via evapotranspiration, however this has not been accounted for in the calculations also.)

Refer to AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-0501 for the interception & treatment proposals, for each sub-catchment area.

Two of the proposed extensive green roofs provide 0.2 m³ less than the required interception volume (based on 5mm of rainfall over 80% of the area in accordance with the GDSDS). This is due to balconies within the subcatchment which will drain internally to the service riser. Any pollutants from the balconies will be deposited within sumps or the Stormtech tank's stone media.

The steps from the courtyard/podium will drain to the bioretention, receiving treatment before entering the network. However, a portion of this sub-catchment area will drain to the proposed linear drainage channel untreated. A silt trap is proposed to be incorporated into this linear drainage channel. Any further pollutants will be deposited within sumps or the Stormtech tank's stone media, while hydrocarbons will be removed by the proposed petrol interceptor.

The road carriageway, external to the under-croft car park, is proposed as permeable paving, to treat runoff at source.

All surface water from the site will discharge to the public network after flowing through the proposed petrol interceptor, where hydrocarbons are removed. Proposed balconies on the western side of the building are currently proposed to drain via downpipes and enter the permeable paving. Proposed balconies facing on to the courtyard are proposed to drain via downpipes to the intensive green roof planting proposed.

Swales are proposed within the public landscaping in order to treat runoff from the public footpaths external to the building. While swales and the Stormtech tank's stone medium both provide treatment, it is minimal and difficult to quantify, and these volumes are therefore excluded from the calculations above.

4.5 Flow Exceedance Route

The Flow Exceedance Route for the case of 50% blockage at the Hydrobrake was examined. In the event of a blockage during a major rainfall event, the Hydrobrake manhole and surrounding gullies will flood first, when the network has surpassed capacity, as they are lowest proposed gullies on the site. Due to the proposed levels, the associated flooding will flow out of the site onto Carmanhall Road. Approximately 5 m³ will be retained on site behind the 100 mm raised pedestrian crossing and the 100 mm kerb height. The excess flow should then enter the existing gullies on Carmanhall Road. The Flow Exceedance Route is shown in PR461030-ACM-XX-00-DR-CE-10-0601. Refer also to Section 5 of the Flood Risk Assessment for details of the surcharge analysis.

4.6 Engagement with Dún Laoghaire-Rathdown County Council

Following the Pre-Application meeting held on the 23rd November 2020 with An Bord Pleanála, AECOM have engaged with the Executive Engineer in the Drainage, Planning and Municipal Services section in Dún Laoghaire County Council. Guidance was provided on;

- The site's discharge rate (Qbar was agreed),
- Public areas to be Taken In Charge and associated drainage which will discharge unrestricted,
- Green Roof provision, and
- Inclusion of permeable roof paving.

As requested, a sub-catchment assessment of interception & treatment, based on areas contributing to runoff, has been undertaken to ensure each sub-catchment of the site is receiving sufficient interception and/or treatment.

Following discussions with DLRCC, the areas which constitute the total roof area have been refined appropriately. The resulting green roof area is 67% of this roof area. Green roof provision is in accordance with DLRCC requirements, as set out in Appendix 16 of The Development Plan.

5. Wastewater Drainage

5.1 Engagement with Irish Water

A Pre-Connection Enquiry was submitted to Irish Water (Reference No: CDS20000844) for the proposed development on the 6th February 2020 and Irish Water issued the Confirmation of Feasibility (Appendix K) on the 14th August 2020, which stated the wastewater connection must be made to the foul sewer on Arkle Road. Additional survey was obtained for this sewer. It was found that the furthest upstream pipe was blocked/capped (the sonde extended only 300 mm upstream). It is therefore proposed to connect to the sewer at the next manhole downstream. Refer to Appendix C for Utility Survey records.

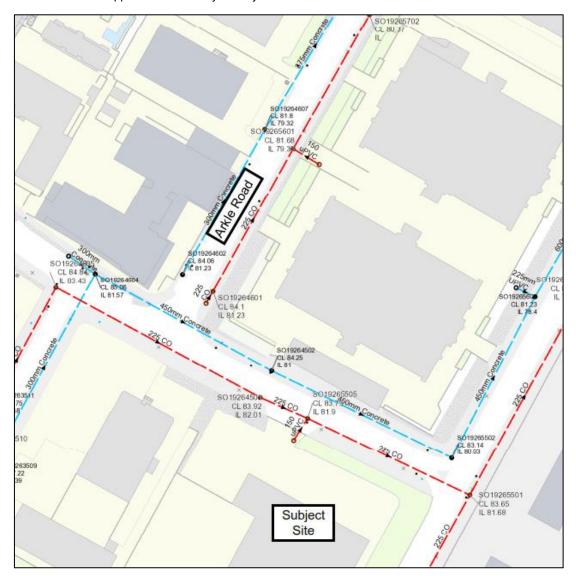


Figure 5.1: Existing Civil Infrastructure. (Full map in Appendix A)

In advance of the Pre-Application meeting, with An Bord Pleanála, held on the 23rd November 2020, Irish Water submitted correspondence to ABP dated 18th November 2020, which confirmed that a Statement of Design Acceptance had been issued.

Following the ABP Opinion, Case ABP-307978-20, some modifications were made to the scheme, which resulted in modifications to the drainage levels. As a result, AECOM have submitted and obtained an updated Statement of Design Acceptance for the proposed network (Appendix L).

5.2 **Proposed Wastewater Network**

It is proposed to connect the proposed to the existing 225 mm diameter clay wastewater sewer in Arkle Road, as instructed by the Confirmation of Feasibility.

The design has been undertaken in accordance with Irish Water's Code of Practice for Wastewater Infrastructure. Refer to the proposed foul network as shown in AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-0501 and to Appendix K for the wastewater network calculations.

The table below highlights the proposed foul loading on the wastewater associated with the residential units. This is based on the national average population equivalence (PE) of 2.7 persons per dwelling.

	Wastewater Discharge						
	Use	Proposed No. Residential Units	Population Equivalent (PE)	Peaking Factor	Foul Discharge (I/d) *	Foul Discharge (l/s)	Peak Flow** (I/s)
1	Residential	428	1156	3.0	190,674	2.21	6.62

*based on foul loading 165 l/p/d as per Irish Water Requirements

** based on peak factor of 3.0 as per Irish Water Requirements (population between 1001-5000)

The dry weather flow (DWF) is estimated as 2.21 l/s with a peak flow of 6.62 l/s. Refer to Appendix K for foul water network calculations.

6. Water Supply Layout

6.1 Engagement with Irish Water

A Pre-Connection Enquiry was submitted to Irish Water (Reference No: CDS20000844) for the proposed development. The Confirmation of Feasibility was issued on the 14th August 2020 and is attached in Appendix K.

In advance of the Pre-Application meeting, with An Bord Pleanála, held on the 23rd November 2020, Irish Water lodged correspondence to ABP dated 18th November 2020, which set out some additional requirements in respect of Water Supply – refer to Appendix N. It is noted that the number of residential units proposed has since been reduced to 428.

This correspondence states that "where any proposals by the application to build over or divert existing water or wastewater services the application is required to submit details to Irish Water for assessment of feasibility and have written confirmation of feasibility of diversion(s) from Irish Water ahead of the SHD Application to the board."

In this regard AECOM have engaged with Irish Water and obtained a Diversion Confirmation of Feasibility – refer to Appendix L. A diversion agreement will be required in addition to a connection agreement from Irish Water, following a grant of planning for the development.

6.2 **Proposed Water Supply**

A 14 inch (~350 mm) Asbestos watermain is present in Carmanhall Road and a 6 inch Asbestos watermain (~150 mm) diameter watermain is present in both Carmanhall Road and Blackthorn Avenue. A 101.6 mm connection to the site from the 6 inch (~150 mm) diameter in Blackthorn Avenue is shown, refer to existing records in Appendix A.

Under Irish Water's Confirmation of Feasibility (14th August), reference is made to the existing Irish Water infrastructure in place on and in the vicinity of the subject site. The existing asbestos supply connection to the site is to be removed and replaced with a 150 mm connection between the existing 6 inch (~150 mm) asbestos watermain in Carmanhall Road and the existing 6 inch (~150 mm) asbestos watermain in Blackthorn Road, in order to supply the development. Due to this proposed upgrade, a Diversion Confirmation of Feasibility was required and was obtained from Irish Water. A Diversion Offer must be obtained before works commence.

1 no. fire hydrant is to be removed as part of the decommissioning the existing connection. 1 no. hydrant is shown on the existing 101.6 mm connection to the site (to be replaced following the upgrade to a 150 mm watermain) and 1 no. existing hydrant is shown on the 14 inch (355.6 mm) watermain on Carmanhall Road, as shown in the existing records in Appendix A. Existing hydrants are to be confirmed on site. 2 no. new hydrants are proposed to serve the development.

The design has been undertaken in accordance with Irish Water's Code of Practice for Water Infrastructure. Refer to AECOM Drawing No. PR461030-ACM-XX-00-DR-CE-10-2701.

Water Demand					
Use	Proposed No. Residential Units	Associated Population	Average Water Demand* (I/d)	Average Water Demand (I/s)	Peak Demand** (I/s)
Residential	428	1156	173,340	2.01	12.54

*based on 150 l/p/d as per Irish Water Requirements

** based on average peak demand factor of 1.25 and peak factor of 5, as per Irish Water Requirements

The average water supply has been estimated to be 2.01 l/s, with a total peak of 12.54 l/s.

Project reference: PR-461030

Appendix A – Site Investigation

PROPOSED DEVELOPMENT SANDYFORD DUBLIN MARLET PROPERTY

AECOM CONSULTING ENGINEERS

CONTENTS

I	INTRODUCTION
П	FIELDWORK
ш	TESTING
IV	DISCUSSION

APPENDICES

Ι	BORING RECORDS
**	non-nr conn - oco

- II ROTARY CORE LOGS / PHOTOGRAPHS
- III TRIAL PIT RECORDS
- IV PLATE BEARING TEST
- V BRE DIGEST 365 INFILTRATION
- VI TEST DATA
 - a. Geotechnical
 - b. Environmental / Chemical
 - c. Ground Water and Gas
- VII SITE PLAN

FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

General.

Recommendations made, and opinions expressed in the report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations. Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Boring Procedures.

Unless otherwise stated, the 'Shell and Auger' technique of soft ground boring has been employed. All boring operations sampling and/or logging of soils and in-situ testing complies with the recommendations of the British Standard Code of Practice BS 5930 (1981), 'Site Investigation' and BS 1377:1990, 'Methods of test for soils for civil engineering purposes'.

Whilst the technique allows the maximum data to be obtained in soft ground, some disturbance and variation of soft and layered soils is unavoidable. Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

Where peat has been encountered during siteworks, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 & Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986).

Routine Sampling.

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104mm diameter open-drive tube sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strata section.

In-Situ Testing.

Standard penetration tests, utilising either the standard split spoon sampler or solid cone and automatic trip-hammer are conducted unless otherwise where required by instruction. Subsequent to a seating drive of 150mm, a summation for the number of blows for 300mm penetration is recorded on the boring records together with the blow count for each 75mm penetration. In cases where incomplete penetration is obtained, the number of blows for the recorded value of penetration are noted. In coarse granular soils, a cone end is fitted to the sampler and a similar procedure adopted.

Groundwater.

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level.

Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage condition, tidal variation or other causes.

Retention of Samples.

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

REPORT ON A SITE INVESTIGATION AT FORMER AVID SITE

SANDYFORD FOR

MARLET PROPERTY GROUP AECOM CONSULTING ENGINEERS

Report No. 22455

JUNE 2020

I Introduction

A new multi-storey residential development is proposed for this site located at the junction of Blackthorn Road and Carmanhall Road in Sandyford. The site was formerly occupied by AVID, the old buildings have all been demolished and the area prepared for this new development.

An investigation of sub soil conditions in the developments area has been carried out by IGSL under the direction of AECOM Consulting Engineers, acting for the developers, MARLET Property Group.

The scope of works scheduled and completed is detailed below:

*	Cable Percussion Boreholes	4 nr.
٠	Rotary Core Drilling	2 nr.
٠	Trial Pits	12 nr.
•	CBR by Plate Test	1 nr.
٠	Infiltration Test	2 nr.
٠	Water and Gas Monitoring	

- Geotechnical Laboratory Tests
- Environmental Laboratory Tests

The investigation has been carried out in accordance with the various standards outlined in the foreword to this document. Field operations were completed in March 2020.

This report includes all factual data from field operations and laboratory including detailed geotechnical logs and laboratory data.

Recommendations for foundation construction are also presented in this report.

II Fieldwork

The development area is Brownfield following demolition of buildings and site preparation works. The surfaces ranged from hard-core fill to tarmac and topsoil.

The various exploratory locations are noted on the drawing enclosed in Appendix VII. This drawing was provided by AECOM. Each location was set out to the specified coordinates by IGSL site personnel.

All exploratory positions were scanned electronically (CAT) to ensure that existing services were not damaged. Hand excavation was also carried out to a depth of 1.00 metres at borehole locations to ensure that underground services were not damaged.

The various exploratory methods are discussed in the following paragraphs.

Boreholes

Boreholes were 200mm diameter and were constructed using conventional cable percussion equipment. Holes were referenced BH01 to BH04 and were located at the four corners of the site

Detailed geotechnical records are contained in Appendix I to this report - the records give details of stratification, sampling, in-situ testing and groundwater. Note is also taken of any obstructions to normal boring requiring the use of the heavy chisel for advancement. It was not possible to recover undisturbed samples because of the high stone/cobble content of the strata encountered.

The findings at the four locations are quite consistent. Surface FILL extends to depths ranging from 1.00 to 1.90 metres.

In all four boreholes stiff to very stiff brown and grey sandy gravelly CLAY is present below the FILL Boreholes continued in this stratum to refusal on obstructions at depths ranging from 7.30 to 11.20 metres. An increasing strength with penetration depth has been noted. Cobbles and boulders were present in the gravelly clay stratum.

This gravely clay is GLACIAL TILL or BOULDER CLAY, very typical of the greater Dublin area.

BH02 and BH04 were dry during boring while slow to moderate water seepages were noted at 3.30 metres in BH01 and 3.10 metres in BH03. Slotted standpipes were installed in BH01 and BH02 to facilitate long term observation of ground water and permit measurement of any gas present.

Rotary Core Drilling

Rotary core drilling was scheduled at two locations to advance hole depth and establish bedrock horizon. These holes were bored through the boulder clay deposits to the underlying granite bedrock. Rotary holes were designated RC02 and RC04.

A GEO405 rig was used to drill and recover 78mm diameter core of rock using triple tube diamond drilling technique. Open-hole Symmetrix Drilling was used in the overburden soils

All recovered core was returned to the laboratory for detailed logging and photography. The geotechnical core logs are contained in Appendix II. The logs note Total Core Recovery (TCR), Solid Core Recovery (SCR), Rock Quality Designation (RQD) as well as presenting a fracture spacing log and detailed geological description.

The drilling was advanced through overburden described as stiff brown and black very gravelly clay with cobbles and boulders throughout.

Weak to Medium Strong grey GRANITE was noted in RC02 at 8.70 metres BGL and 100% core was recovered from 8.70 to 11.70 metres. This core was quite fractured with low SCR and RQD values.

At RC04 very weathered GRANITE was noted at 11.10 metres BGL. Drilling continued to 14.80 metres with only limited recovery of solid core in this location.

Sub samples of the recovered core were taken and sent to the materials laboratory for Point Load Strength Tests.

A 50mm slotted PVC standpipe was installed in both locations with gravel surround and surface seal, details of the installations are provided on the drilling record. Water was noted at final standing levels of 2.20 and 1.32 metres BGL.

Trial Pits

Trial Pits were excavated at twelve locations to establish stratification and permit sample recovery for environmental analysis. Trial Pits are referenced TP01 to TP12 and fully detailed records are presented in Appendix III. Photographs were also taken at each trial pit and these are also attached for record purposes.

The pits reflect a very high degree of consistency with FILL in all locations (varying from 0.30 to 1.20 metres in thickness) overlying stiff to very stiff BOULDER CLAY. All trial pits were completed at 3.00 metres and no ground water was encountered during the course of the investigation, other than a minor seepage at 2.00 metres in TP01. Excavations remained stable throughout.

Trial Pits were backfilled with compacted excavated material and the areas levelled.

Plate Bearing Test

The CBR value of the soil at shallow depth was established at one locations using Plate Bearing Test Apparatus. A steel plate is loaded and off-loaded incrementally over two stages and the deflection under load and recovery under off-load is measured by a system of dial gauges. The data is processed and load settlement graphs are prepared. An equivalent CBR value is calculated in accordance with NRA HD25-26/10.

The test was carried out at 0.50 metres on MADE GROUND. An equivalent CBR value of 10% was obtained on the Load Cycle, increasing considerably on re-load.

Test data sheets are presented in Appendix IV.

Infiltration Tests

Two infiltration tests were carried out in accordance with BRE Digest 365 in the specified locations. Test data is presented in Appendix V.

In both locations no fall in water table was noted over the specified period and a ZERO Infiltration Rate was recorded. The results are typical of the very low permeability boulder clays present on the site and in the general area.

The use of the local authority drainage system for disposal of storm and surface water is therefore recommended.

Water and Gas Monitoring

Standpipes were installed in four locations to facilitate long term monitoring of ground water levels and determine gas concentrations. Measurements were carried out at intervals following site completion.

Details are presented in Appendix VIc. Final standing water level has stabilised at approximately 2.00 metres BGL.

Concentrations of CO2, O2, and CH4 are negligible and no safety issues arise in this regard.

III. Testing

a) In-Situ :

Standard penetration tests were carried out at approximate 1.00 metre intervals in the geotechnical boreholes to measure relative in-situ soil strength. Tests were also carried out in the rotary holes. N values are noted in the right hand column of the individual records, representing the blow count required to drive the standard sampler 300mm into the soil, following initial seating blows. Where full test penetration was not achieved the blow count for a specific penetration is recorded, or refusal is indicated where appropriate. Results are summarised as follows.

Stratum / Depth	N Value Range	Comment	
FILL DEPOSITS	14 to 17	Medium Dense	
BOULDER CLAY			
2.00 metres BGL	21 to 32	Stiff	
3.00 metres BGL	18 to 32	Stiff	
4.00 metres BGL	28 to 43	Stiff to Very Stiff	
5.00 metres BGL	35 to 42	Very Stiff	
6.00 metres BGL	36 to 43	Very Stiff	
7.00 metres BGL	39 to +50	Very Stiff to Hard	
40 to +50 Very Stiff to Hard		2	

Refusal of SPT apparatus was recorded at the base of each borehole possibly indicative of the granite bedrock horizon.

(b) Laboratory :

A programme of laboratory testing was scheduled following completion of site operations. Geotechnical soil and rock testing was carried out by IGSL in its INAB-Accredited laboratory. Chemical testing was performed by CHEMTEST in a UKAS accredited laboratory.

The overall test programme included the following elements:

*	Moisture Content	IGSL
•	Liquid and Plastic Limits	IGSL
•	PSD Grading by wet sieve	IGSL
•	PSD Grading by Hydrometer	IGSL
•	Point Load Test on Rock Core	IGSL
•	Sulphate Chloride and pH	CHEMTEST
•	RILTA Suite Environmental	CHEMTEST

All test data is presented in Appendices VIa and VIb. and individual test results are discussed as follows:

Classification / Moisture Content

Six samples of the gravelly CLAY stratum from the boreholes had index properties established. Results consistently fall into Zone CL of the standard Classification, indicative of low plasticity sensitive clay matrix soils. Moisture content for the samples ranges from 11% to 17%. Results are typical of the local boulder clay.

Grading

Wet sieve analysis and hydrometer was used to establish PSD grading curves for four samples of the glacial till. The graphs reflect material graded smoothly from the clay to gravel fraction, the straight-line pattern of the graphs is typical of the local boulder clay deposition.

Point Load Test

The strength of the limestone bedrock has been established by Diametric Point Load Tests on four segments of core. Equivalent UCS values ranging from 4 to 40 MPa with an average UCS value of 23 MPa. The low results reflect the highly weathered and weak nature of the bedrock.

Chemical (BRE SOI Suite)

Five soil samples were selected for sulphate, Chloride and pH analysis. Sulphate concentrations (SO4 2:1 extract) of < 0.010 g/l were established with pH values of 8.4 to 8.7. Chloride contents were also consistently low < 0.010 g/l. A sulphate design class of DS-1 (ACEC Classification for Concrete) is indicated for sulphate concentrations less than 0.5 g/l. No special precautions are therefore required to protect foundation concrete from sulphate or chloride aggression.

RILTA Suite Environmental

Sixteen samples of the MADE GROUND taken at 0.50 to 1.00 metre from each trial pit were submitted for detailed analysis to RILTA Suite (WAC) parameters.

Fifteen of the sixteen samples are classified as INERT with no elevated contaminant levels established.

In one sample however (TP05 @ 0.50m BGL) an elevated sulphate content was recorded, in excess of the permitted INERT limit. The remaining levels recorded in this sample were all below the INERT levels.

No traces of Asbestos were noted during routine screening.

IV Discussion:

A new multi-storey residential development is to be undertaken on this site in Sandyford. The nine-storey building will incorporate a single storey basement car park. A formation depth some 3.50 to 4.00 metres BGL is envisaged.

A detailed investigation of sub soil and bedrock conditions has been carried out under the direction of AECOM Consulting Engineers on behalf of MARLET Property Group.

Summary Stratification

The findings are very consistent and confirm the presence of shallow surface FILL over BOULDER CLAY deposits with GRANITE bedrock encountered at depth between approximately 9.00 and 11.00 metres.

The FILL extends to a maximum depth of about 1.50 metres and is firm or medium dense in situ, with N values in the range 14 to 17 and an in situ CBR value of 10%.

The BOULDER CLAY or glacial till comprises stiff to hard brown, grey and black sandy gravelly CLAY typically containing cobbles and boulders. SPT values increase with depth from about N=20 at 2.00 metres BGL to N > 50 below 7.00 metres.

The characteristics of the Dublin boulder clay are very well documented and the laboratory data for this site is consistent with the published data.

Ground water seepages were noted in several locations and long term water observations in standpipes indicates a final standing level of about 1.50 metres BGL for this site.

Variation in the general grading pattern of the till can occur, with an elevated granular content and increased moisture content often identified. Bands of water bearing clayey gravel can also typically occur within the generally cohesive soils.

Proposed Development

With regard to the proposed development (incorporating multi-storey construction over basement) the following geotechnical issues are discussed.

- Foundations / Bearing Capacity
- Piling
- Basement Construction
- Excavation / Ground Retention
- Groundwater Control / Uplift

Foundations / Bearing Capacity

At an assumed basement formation depth of 4.00 metres BGL, the sub soils consist of very stiff to hard dark brown or grey gravelly CLAY (Boulder Clay). SPT values at this depth range from N=28 to N=43 with an average value of N=36.

The boulder clay at 4.00 metres BGL should readily support an allowable bearing pressure of the order of 325 KPa for basement slab or column base construction.

N values at 5.00 metre BGL show an increase, with an allowable bearing pressure of the order of 375 KPa recommended at this depth.

The characteristics of the local boulder clay are well documented with numerous publications detailing behavioural and strength / settlement characteristics. The field and laboratory findings from this site are consistent with the extensive local data. The boulder clay will be sensitive to moisture content variation and should be protected from rainfall by blinding. Visual inspection of excavated formation by experienced personnel is also recommended to ensure uniformity and suitability of the founding medium. Any soft zones encountered should be removed and replaced with low-grade concrete.

Settlement in the very stiff to hard glacial till under the above loads should not exceed 5mm and differential movement should be negligible.

Piling

Should direct excavation to a suitable bearing stratum prove uneconomic from either an engineering or environmental viewpoint, the use of piling techniques can be considered.

Various piling techniques are available with specialist contractors, experienced in local ground conditions available to provide this service.

The stiff to hard black till encountered at about 2.00 metres extends to bedrock horizon at about 10.00 metres and can be used as founding medium for light to moderately loaded piles.

For multi-storey structures with high column loads it is likely that large diameter piles, rock socketed into the granite bedrock will be required.

Proof core drilling has indicated the presence of highly weathered non-intact granite at the soil rock interface, in excess of 3.00 metres in places.

Piling contractors should be consulted to determine the optimum solution for this site, having regard to the geotechnical data and to any possible environmental restraints.

Basement Construction

As a basement will be incorporated over the full footprint the very stiff to hard lodgement till at approximately 3.50 to 4.00 metres BGL is recommended as founding medium with an allowable bearing pressure of 300 to 350 KPa indicated by SPT values averaging N=36.

Settlement under this intensity of load will be low (< 5mm) and differential settlement will be negligible.

Excavation / Ground Retention

Assuming 4.00 metre deep basement construction a retaining wall structure will probably be required to support the soils, prevent undermining of sensitive adjoining buildings or roadways and preclude ground water ingress.

A number of ground retention techniques are available and each should be fully evaluated. These include the following:

- Steel Sheet Pile Wall
- Secant Pile Wall
- King Post Wall

Specialist contractors with will advise on the most suitable and economic option for this development.

Groundwater

Water ingress was noted in two of the boreholes at approximately 3.00 metres. The inflow was slight to moderate and control of ground water in basement excavation should be readily achieved by conventional pumping from local sumps.

Long-term water observation in standpipes has indicated a final standing level at approximately 2.00 metres BGL and this figure should be adopted in design against uplift.

Roads / Car Parking

A CBR value of 10% was obtained at 0.50 metres BG in the upper medium dense FILL. This should be suitable for pavement design. Visual inspection of pavement formation is recommended to ensure that all suspect or organic material is removed prior to construction.

Infiltration

Two percolation tests to BRE Digest 365 confirmed that the soils are unsuitable for dispersion of storm and surface water. The Local Authority drainage system should be utilised.

Environmental

The results of WAC analyses showed that one sample failed to satisfy the criteria for Inert waste as stipulated by the European Landfill Directive. The fact that only one element of one test out of sixteen analysed exceeded the INERT level, suggests that consultation with landfill operators may well result in acceptance of excavated material from this site.

The results of the RILTA Suite tests can be used to carry out a full Waste Characterisation Assessment (WCA). This assessment is carried out by an environmental specialist and determines whether the soils are Hazardous or Non-Hazardous in advance of being despatched to landfill. Given the test results a WCA may be relevant to this site and may be required by the landfill operators in the event of major excavation.

Concrete

Low sulphate and chloride contents were established with near neutral pH values. No special precautions are deemed necessary to protect foundation concrete.

<u>IGSL/JC</u> June 2020

Appendix I Boring Records

														REP	PORT NUMBER	२
	હેલું	3		GE	OTEC	HNICA	L BOR	ING I	RECC	RD					22455	
со	NTRAC	T Avi	d Site, Sa	andyford		*****							IOLE N	0.	BH1	
	-ORDIN	ATES _EVEL (n					PE OLE DIAME OLE DEPTI		nm)	Dando 20 200 7.30	000				Sheet 1 of 24/03/2020 25/03/2020	
	ENT	Mai	w			1	MMER REF			1.50		BORE			W.Cahill	
ENG	GINEER	AEC	COM			ENERG	Y RATIO (%)	1	· 1 · · · ·	<u> </u>	PROCE	ESSED	3Y	I.Reder	
Depth (m)			De	escription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	- <u>r</u>	Recovery		Field Test Results	Standpipe Details
- 0	TOPS	OIL					<u></u>	<u> </u>	0.20	<u> </u>	S F		- 2			a N N
-			ID (comp	rised of ang	ular broke	en rock			0.60							
-	MADE		ID (Com	orised of gra	velly clay	with			1.00	-						
1	Firmt	stone) o stiff, da l and occ	rk brown asional c	, sandy silty obbles	CLAY with	n some				AA135559	эв	1.00			N = 17 (6, 7, 4, 4, 4, 5)	
2									2,50	AA135560	9 8	2.00			N = 21 (4, 4, 5, 5, 5, 6)	0 0 0
3	Stiff, c occas	lark grey, ional cob	sandy s bles	ilty gravelly (CLAY with				2.30	 AA13556*	1 8	3.00			N = 26 (4, 5, 6, 6, 7, 7)	
4	Vervis	tiff brow	n sandv	gravelly silty		hmany			4.30	AA13556;	2 В	4.00			N ≃ 33 (6, 7, 7, 8, 8, 10)	
- 5	suban	gular to s	subround	ed cobbles	and boulde	ers				AA135563	3 8	5.00			N = 35 (4, 6, 7, 8, 8, 12)	
6										AA135564	ŧ B	6.00			N ≃ 40 (7, 8, 8, 9, 11, 12)	
7	Obstru	iction							7.30	AA135568	5 В	7.00			N = 50/40 mm (25, 50)	° ∎°
9		f Borehol	e at 7.30	m												
- HA	RD ST	RATA BO		ISELLING					<u> </u>		1		l V	VATE	R STRIKE DE	TAILS
Fron	n (m) "	ľo (m)	Time (h)	Comments			Water Strike		sing epth	Sealed At	Ris To		Time (min)	Com	ments	
	.8 .2	5.1 7.3	0.75 2				3.80	3.	.80	5.00	1.7	O I	20	Мос	lerate	
									Holo	Conina			r		IDWATER PRO	OGRESS
		TION DE		p RZ Base	<u></u> Τ	00	Date		Hole Depth	Casing Depth		pth to vater	Comm	ents		
	Date -03-20	7.30	1.00		Typ 50mm		-									
RE	MARKS	l Hand di	ug inspec	tion pit for s	l ervices		I		8 - Bulk I	Disturbed (lub Disturbed (lub Disturbed e Bulk Disturbed			Sam	nple	rbed 100mm Diameter ed Piston Sample	
l				· · · · · · · · ·					Env - Em	e Bulk Disturbe vironmental Sa	sa mple (Jar	+ Vial + Tub	w.	Water Sa	ample	

and the second second
1971 - N. N.
and the second
day in and
Homeson and
1937
المتالث الا

GEOTECHNICAL BORING RECORD

REPORT NUMBER

in the second se	SJ1	•			GE	OTECH	INICA	L BORI	NGI	KECO	RD					22455	
	NTRA		vid Site,	Sanc	lyford								BOREH		10.	BH2 Sheet 1 of 1	
		NATES	m AOD)				e)Le diame)Le depth		n m) 2	Dando 2(200 8.50			OMME		D 26/03/2020	
CLIE	ENT SINEE		arlet ECOM			3		MER REF.		,			BORED		BY	W.Cahill I.Reder	1
Depth (m)				Desc	ription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth Depth (m)	Baroven	ecovery	Field Test Results	Standpipe Details
0	TOP Firm grav	dark bro	own, sa bbles (l	ndy si Possil	Ity CLAY of the second se	with occasi Ground)	ional		ш 	0.05	SPL1	в	1.00		2	N = 16 (2, 2, 4, 3, 5, 4)	
2	Stiff with	to very sl cobbles	iff , darl	k grey	, sandy gi	ravelly silty	CLAY		*******	1.90	SPL2	9	2.00			N = 23 (4, 5, 5, 5, 6, 7)	
3	Verv	stiff lioh	t brown	Verv	sandy CI	AY with sr	ome			3.80	SPL3	В	3.00			N = 32 (5, 7, 7, 8, 6, 9)	
	Very stiff, light brown, very sandy CLAY with som gravel									2	SPL4 SPL5	B	4.00 5.00			N = 43 (6, 8, 10, 10, 11, 12)	
-	grave	stiff to hi elly silty (ounded c	CLAYw	ith ma	iny suban	wn, sandy gular to				5.40	SPL6	B	6.00			N = 42 9, 10, 10, 10, 11, 11) N = 44 (8, 9, 9, 10, 11, 14)	
7											SPL7	В	7.00			N = 39 (6, 8, 8, 9, 10, 12)	
		ruction of Boreh	ole at 8.	.50 m						8.50	SPL8	8	8.20			N = 50/75 mm (12, 16, 32, 18)	<u>. </u>
HAI	RD S1	RATA B			ELLING				·	L		,I			WATE	ER STRIKE DET	AILS
From		To (m)	Time (h)	Co	omments			Water Strike		sing S epth	Sealed At	Rise To		'ime min)	Corr	ments	
4. 8.		4.9 8.5	1.25 2												No	water strike	
										Hole	Caeino	1		****		NDWATER PRO	GRESS
C	Date 03-20		pth RZ	<u>Top</u> .00	RZ Base 8.50	Typ 50mm		27-03-20		Depth 5.40	Casing Depth 5.40	l w	oth to ater .30	Comm	nents		
REM	MARK	S Hand	dug inst	oectio	n pit for s	ervices		1		8 - Bulk D LB - Large	le Legen Disturbed (tub Disturbed Bulk Disturbe ironmentat Sar	ed be	Vial + Tub)	Sa P	mple	urbed 100mm Diameter bed Piston Sample Sample	

			N.														R	EPORT NUMBER	
	, L	કડા				GE	OTECHNIC	:AL	BOR	INC	3 R	RECO	RD					22455	
0	COI	NTRAC	T Av	id Site, S	Sandyf	ord									BOREN	IOLE NO	0.	BH3 Sheet 1 of 1	
		ORDIN						EHO	LE DIAME			m) 2	Dando 20 200	000	DATE	COMME		ED 23/03/2020	
- H			EVEL (r	n AOD) Irlet					LE DEPTI MER REF	-		8	3.30		BORE			D 24/03/2020 W.Cahill	
		SINEER		СОМ					RATIO (%					<u> </u>		SSED E	BY T	I.Reder	
	Ê								_		5	(E)	-			2		Cipid Test	be.
:	Uepth (m)			Γ	Descrip	otion			Legend		Elevation	Depth (m)	Ref. Number	Sample Type	Depth	Recovery		Field Test Results	Standpipe Details
	0	TARM									_	0.15	<u> </u>		-				
		MADE		ND (con	nprised	l of angu	ılar gravel -	ß				0.30	1						
		MADE clay fil	GROU	ND (Cor	nprise	d of brov concrete	vn sandy gravel fragments)	īy 🖁					AA135551	в	1.00			N = 14	
	'	Stiff g	rey/brow	n sandy	silty C		h some gravel	P				1.20		Ŭ				(2, 2, 3, 3, 4, 4)	
		and of	ccasiona	il cobble	S			-					ĺ						
-1	2												AA135552	8	2.00			N = 20 (3, 4, 4, 5, 6, 5)	
								ŀ	<u> 2</u>										
								- - -										N = 18	
	3							- -					AA135553	B	3.00			(3, 4, 5, 5, 4, 4)	
								-	<u> </u>			3.90							
ŀ	4	Very s	tiff dark	brown g	ravelly	CLAY	~		o0			3.30	AA135554	в	4.00			N = 50/210 mm (6, 14, 14, 20, 15)	
1								-											
								Ē										N ≈ 35	
E	5							-	°°				AA135555	В	5.00			(5, 6, 8, 8, 9, 10)	
414									~										
Ē	6												AA135556	B	6.00			N = 36 (6, 7, 7, 8, 10, 11)	
Ē	ł	Very s	tiff, brov	vn and g	rey/br	own, san	dy gravelly silty	h	o 00			6.40	-						
-		CLAY and be	with ma oulders	ny suba	ngular	to subro	ounded cobbles		$\theta_{\mathbf{e}}$									N = 40	
F	7								<u>*</u>				AA135557	В	7.00			(7, 8, 10, 10, 9, 11)	
									<u>_</u>										
	8							ŀ	<u> </u>			8.30	AA135558	В	8.00		1	N = 50/75 mm (10, 14, 46, 4)	
		Obstru End o	uction f Boreho	le at 8 3	10 m				×3			0.00							
بايري		210 0	r Dorone		,0 m														
	9																		
Ē	HA	RD ST	RATA B		HISE	LING		I.		L	l			 	<u> </u>		NA	TER STRIKE DET/	AILS
F			To (m)	Time (h)	Con	nments			Wate Strike	e	Cas De	pth	Sealed At	Ri T	o 📃	Time (min)		omments	
9/5/20		.2 8	4.5 8.3	1 2					3.10		3.1	10	4.20	1.6	50	20	N	Aoderate	
GDT 2																			
IGSL BH LOG 22455.GPJ IGSL.GDT 29/5/20											T 1	Hole			anth to	T	•	UNDWATER PRO	GRESS
5.GPJ		TALLA Date	TION DE	TAILS		7 Basal	Туре		Dati	e		Hole Depth	Casing Depth		epth to Vater	Comm	ent	ts	
2245			Luh na			L Dase	туре												
HLO	REI	MARKS	Hand o	l lug insp	ection	pit for se	ervices		1		1	Samp	le Legen Disturbed (tub Disturbed	d		L	11-1	feturbad 100mm Pi	
GSL B												LB Larg	Disturbed (tub listurbed e Bulk Disturbe ironmental Sar	d	r + Vial + Tur	Sar P -	mple Undis	fisturbed 100mm Diameter sturbed Piston Sample er Sample	
i									~~~~							,			

"

Survey June
Same /
୍ୟାସ୍ଟମ୍ /

GEOTECHNICAL BORING RECORD

REPORT NUMBER

22455

	· · · · · · · · · · · · · · · · · · ·																
ļ	NTRA		vid Site,	Sand	yford	r							BOREH SHEET		10.	BH4 Sheet 1 of 2	
		NATES	m AOD)					°e Ole diame Ole depti		mm) 🔅	Dando 20 200 11.20		DATE (DATE (ED 20/03/2020 ED 23/03/2020	
	ENT GINEEI		arlet COM					MMER REF Y RATIO (%					BORED PROCE		BY	W.Cahill I.Reder	
		······································								-		San	nples				
Depth (m)				Desc	ription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Description	кесолегу	Field Test Results	Standpipe Details
- 0	TAR	MAC								0.15			1				
1	\C.L.& Firm grave	304) to stiff, d el (Possil	ark brov oly Made	wn, sa e Gro	indy silty und)	gular gravel	some	2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.80	AA130581	В	1.00			N = 17 (2. 3. 4. 4, 4, 5)	
- 2	Very	stiff, dar	k brown	/black	, sandy :	silty gravelly	/ CLAY				AA130582	8	2.00			N = 32 (5, 6, 8, 8, 7, 9)	
4	Stiff, cobb		wn, very	/ sand	ły gravel	ly CLAY wit	h some			3.10	_AA130583	8	3.00			N = 24 (3, 4, 4, 6, 7, 7)	
	grave	elly silty (iff, brow CLAY wi	n and th ma	l brown/g	rey, sandy es and occ	asional			4.20	AA 130584	8	4.00			N ≕ 28 (4, 5, 6, 7, 7, 8)	
5		Stiff to very stiff, brown and brown/grey, sa gravelly silty CLAY with many cobbles and boulders									AA 130586	B	5.00			N ≃ 35 (6, 8, 8, 9, 9, 9)	
6										:	AA 130586	8	6.00			N = 43 (6, 8, 10, 10, 11, 12)	
7											AA 130587	8	7.00			N = 42 (7, 9, 9, 10, 12, 11)	
8											AA 130158	В	8.00			N = 41 (6, 7, 9, 11, 10, 11)	
											AA130589	₿	9.00			N = 43 {7, 9, 10, 11, 10, 12}	
HA	RD ST	IRATA B	ORING/	CHISE	ELLING							1	.4		WA		AILS
Fror	rom (m) To (m) Time Comments							Wate Strike		asing epth	Sealed At	Ris To		Time (min)	T	omments	
6	2.3 5.4 0.9	2.5 6.7 11.2	1.25 0.75 2												N	lo water strike	
									· · ·					6	SRO	UNDWATER PRO	GRESS
INS	TALL	ATION DI	TAILS					Date	e	Hole Depth	Casing Depth	De	pth to Vater	Comr	nent	s	
	Date	Tip De	pth RZ	Тор	RZ Base	э Тур	e	20-03- 23-03-		4.50 4.50 4.50	4.50 4.50		DRY 1.70				
REI	MARK	S Hand	dug insp	pectio	n pit for :	services				B - Bulki LB - Lato	Disturbed (lub Disturbed (lub Disturbed Je Bulk Disturbed Vironmental Sat	ed	+ Visi + T	S: P	ample - Undis	tisturbed 100mm Diameter sturbed Piston Sample er Sample	
L										Eux - Eu	summental Sa	mpie (Jar	+ yiai+ iub	, w	- vratt	or oranific	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

2	2	Λ	5	5
4	4	-	\mathbf{v}	J

	•••••••••••															
	NTRA		/id Site	e, Sand	lyford					·····			BOREHC SHEET	DLE NO	BH4 Sheet 2 of 2	
		NATES	m A0[D)				PE DLE DIAME DLE DEPTI		ım)	Dando 20 200 11.20	000			ICED 20/03/2020	
	IENT GINEE		arlet ECOM					MMER REF (RATIO (%					BORED I		W.Cahill Y I.Reder	
							LINLAU		~;			Sar	nples	0200		
Depth (m)				Desc	ription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type		Recovery	Field Test Results	Standpipe Details
10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	grav bouk	to very st elly sity (ders <i>(con</i> ruction of Boreho	CLAY v tinued)	with ma)	any cobble	rey, sandy es and occ	casional			11.20	AA130590		10.00		N = 46 (8, 8, 10, 10, 12, 14) N = 50/95 mm (13, 12, 27, 23)	
H	RDS	IRATA B	ORING	CHISE			-1						<u> </u>	W	ATER STRIKE DET	
		To (m)	Time	e co	mments			Wate	r Ca		Sealed	Ris		me c	Comments	
2	2.3 5.4 0.9	2.5 6.7 11.2	(h) 1.25 0.75 2	5				Strike	De De	pth	At	<u> </u>	<u>> (m</u>	<u>iin)</u>	No water strike	
<u>i</u>											10	1 -		GR	OUNDWATER PRO	GRESS
		ATION DE					·····	Date		Hole Depth	Casing Depth	De	oth to Vater	Comme	nts	
00 77400	Date	Tip De	pth R	Z Тор	RZ Base	Тур	De									
	MARK	S Hand o	dug ins	spectio	n pit for s	ervices		I		LB - Larg	Die Legen Disturbed (tub) Disturbed e Bulk Disturbe vironmental Sam		+ Vial + Tub)	Samp P - Un	Indisturbed 100mm Diameter le kdisturbed Piston Sample later Sample	

Appendix II Rotary Core Records

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

	ୁ ସ୍ତ୍ର	· .			C.	ieoti	=Ch	INIC	AL COP	RE LOG	i RECO	RD				2	245	5
	NTR			vid S	ite, Sand	yford							DRII	LHOLE	NO	RC She	02 et 1 of 2	2
	-ORC			(mOl))				RIG TYPE FLUSH		Geo4 Air/Mi			E COMN E COMP				**********
	IENT			lariet					INCLINATI		-90		1	LED B			ISL	_
	GINE	ER	A	ECO	<u>vi</u>				CORE DIA	METER (M	m) 78		1.00	GED B			.O'Shea	1
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lo (m	cing 9g m)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
0									as returns	of MADE	GROUND	covery, obs consisting o	of clayey g	ravel	0.70			
1									SYMMETI as returns	RIX DRILL of grey br	ING: No rec own black s	covery, obs silty sandy g	erved by c gravelly Cl	driller _AY				
Ē	:								SYMMET	RIX DRILL	ING: No red	covery, obs	erved by c	triller	1.80			
F2									as returns	of grey br	own clayey	sandy GR/	VEL		2.30			
3 3 6 6									as returns	o grey br	JWN DIACK (praveliy CL <i>i</i>	A 1				ADVADAVANAVANAVADAVADAVADAVADAVADAVADAVA	
7	8.70	100	100	85					SYMMETI as returns	RIX DRILL of probab	ING: No rea	covery, obs d ROCK	erved by c	lriller	<u>8.10</u> 8.70			
RE	MAR							• • •		Water	Casing	Sealed	Rise	Time	1			DETAILS
Ho	le ca	sed (J.UU-8	s.70n	n					Strike	Depth	At	To	(min)	N		ər strike	recorded
			<u></u>							Data	Hole	Casing	Depth t	0 0			NATER	DETAILS
	STAL. Date				LS RZ Top	RZ Base		Тур		Date	Depth	Depth	Depth t Water		iment			
	2-03-2		11.7		8.10	11.70		50m	m SP									

	5		1							******					R	PORT	NUM	BER
	165	33/			I	GEOT	EC	INIC	CAL CO	RE LOG	RECO	RD				2	245	5
cc	NTR	ACT	A	vid S	Site, San	dyford							DRIL SHEI	LHOLE	NO	RC)2 et 2 of	<u>ຳ</u>
cc	-ORI	DINA	TES						RIG TYPE		Geo4	5		COMM	ENCE			
	IOUN		VEL						FLUSH		Air/Mi)
	GINE			larie ECO			······	.	INCLINATI	METER (mn	-90 n) 78			LED BY GED BY			iSL O'She	a
Downhole Depth (m)	Core Run Depth (m)	G T.C.R.%	d S.C.R.%	с В.О.D.%	Spa L (n	cture acing og nm) 500 500	Non-intact Zone	H Legend			Descript				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 10									l work ma	trong (when ssive to stru /white mottl	ctureless,	crystalline,						
	10.70	ļ						╏┽╎╴	(contributi	ing to coreld	predomina ess at 9.30-	ntely highly 10.70m, 1	weathere 1.32-11.38	d m&			°	
- 11 		100	25	19				┟┿┿	11.46-11.	70m).							°	
	11.70				_				commonly (<i>continue</i> d	uities are roi / sandy clay /)	ugn, irregu -smeared.	lar. Apertu Dips are ir	res are ope regular.	an, j	11.70		° 🗐 °	
12										of Borehole	at 11.70 m	1		/				
1.1.1														ĺ				
- 13																		
- 14																		
- 15																		
Ę																		
- 16																		
- 16																		
- 17																		
									-									
- 18																		
- - 19																		
Ē																		
4/20										3					1414-		1	
Hoi	MAR le cas		0.00-8	3.70r	n					Water Strike	Casing Depth	Sealed	Rise	Time		ER ST nmeni		DETAILS
22455.GPJ IGSL GDT 16/4/20										June	<u>oepui</u>	At	To	(min)	N	o wate	r strike	recorded
5.GPJ																	·	
M 2245				:	!					l-	Holo		Donth to	····			VATER	DETAILS
한 INS	TALI Date		<mark>on d</mark> i Tip De			RZ Bas	el	Түр)e	Date 12-03-20	Hole Depth 11.70	Casing Depth 8.70	Depth to Water 9.00		ments level rec		Omins aft	er end of
~ · · · · ·	-03-2		11.7		8.10	11.70	-		m SP			5.70		drilling				

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

•

GEOTECH	NICAL CO	RE LOG	RECO	ΗD				2	2455	5
CONTRACT Avid Site, Sandyford					DRIL SHE		-1 10	RC()4 et 1 of 2	*****
CO-ORDINATES GROUND LEVEL (mOD)	RIG TYPE		Geo40 Air/Mis		DATI	E COMME E COMPL		D 10/0	3/2020	
CLIENT Marlet ENGINEER AECOM		TON (deg) AMETER (mn	-90 1) 78		1	LED BY GED BY			SL O'Shea	
o Downhole Depth (m) Core Run Depth (m) T.C.R.% T.C.R.% S.C.R.% Boy S.C.R.% R.Q.D.% R.Q.D.% Non-intact Zone Non-intact Zone	Legend SYMME		Descripti	overy, obs	served by d	riller	Depth (m)	Elevation	Standpipe Details	SPT (N Value)
	SYMME 	IS OF MADE G	NG: No reco wn black sa NG: No reco	overy, obs andy grave	served by d elly CLAY	riller	0.90 2.20			
	as return SYMMET SYMMET With occa With occa SYMMET SYMMET	RIX DRILLIN s of grey brown s of grey brown asional cobble RIX DRILLIN s of grey brown	wn clayey s NG: No reco wn black si es	overy, obs	AVEL served by d gravelly CL	riller AlY riller	<u>3.20</u> Э.40		XIAXIAXIAXIAXIAXIAXIAXIAXIAXIAXIAXIAXIAX	
REMARKS Hole cased 0.00-11.30m	<u> </u>	Water Strike	Casing Depth	Sealed At	Rise To i	Time (min)	Cor	mmen		ETAILS
										DETAILS
INSTALLATION DETAILS		Date	Hole Depth	Casing Depth	Depth to Water					
INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base 11-03-20 14.80 11.10 0.00	Type 50mm SP	-								

																REPOR	TNUM	BER
	63	5 13/			(GEOT	ECł	HNIC	CAL CO	RE LOO	RECO	RD				2	245	55
CC	NTR	ACT	A	vid S	Site, San	dyford								ILLHO EET	LE NO		04 et 2 of	2
co	-Ori	DINA	TES									•			MMENC	ED 10/0		
GF	IOUN	ID LE	VEL	(mO	D)		,		RIG TYPE		Geo4 Air/Mi		1			ED 11/(
	IENT GINE			larle ECC					INCLINAT	ION (deg) METER (m	-90 m) 78			ILLED GGED			GSL .O'She	a
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa L (m	cture acing og 1m) 0 500	Non-intact Zone	Legend			Descrip	lion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 10								<u> </u>	SYMMET	RIX DRILL	NG: No rec	overy, obs	erved by	driller	-10.1	ம		
-									as returns	s of grey bro	own sandy	gravelly CL	.AY					
- - 11								<u>- °</u>						:	11.1	0	20	
· · · · · · · · · · · · · · · · · · ·	12.60	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								RIX DRILL of probabl					12.6	50		
- 13								↓ ~ + + +	cobbles o	f GRANITE	- Non inta	covered as ct	s sandy g	raveny	/			
- 13								+'. -+'									IH	
-		32	10	0				[++										1
E 14								[+										
					:	43		$\begin{bmatrix} - \\ + \\ + \end{bmatrix}$		i								
E	<u>14.80</u>							┎ᆂᆣ	End	of Borehole	at 14.80 m	1			14.8	30	° E°	
≌⊨	MARI e cas		4.00-1	1.30) m					Water Strike	Casing Depth	Sealed At	Rise To	Tin (mi		ATER S		DETAILS
55.GPJ IGSL																No wate	er strike	e recorded
		A									Hole	Casing	Denth	ha T_			VATER	DETAILS
의 INS	TALI Date		DN D			RZ Base		Тур	10	Date 11-03-20	Depth 14.80	Depth 11.30	Depth 1 Water 1.80		ommen	its recorded 1	Omine of	er and of
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-03-2		14.8		11.10	0.00	1		m SP	, i- q 3 " £¢	00,71	11.00	1.00		lling		500115 201	

RC02 - Box 1 of 1 - 8.70-11.70m

RC04 - Box 1 of 1 - 12.60-14.80m

Appendix III Trial Pit Records

a la	all and a second	1		RECO	RD				1	REPORTN		L
્યાહ	ડલા/			-						22	455	
CON	TRACT	Avid Residential Development - A	vid Site , Sandy	ford , Du	blin			TRIAL PI	T NO.	Tp0	1 et 1 of 1	
LOG	GED BY	S.Hannon	CO-ORDINAT	ËS				DATE ST		10/03	3/2020 3/2020	
CLIEI	NT NEER	Marlet Property Groupd	- GROUND LEV	VEL (m)				EXCAVA METHOD		JCB		
								5	Samples	5	(eter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	MADE	GROUND - Tar			0.10							
	MADE G	GROUND - Dense sandy gravel. Gra e and angular to sub rounded.	avels are fine		0.30							,
	MADE C	GROUND - Dense gravel with a high Gravels are fine to coarse and grav are angular to sub rounded.	rels and		0.50			AA131830	в	0.50		
1.0	Stiff grey high cob fine to co angular Stiff grey high cob fine to co	y light brown slightly silty very grave oble content and low boulder conten oarse and gravels cobbles and bou to sub rounded. Possible made gro y light brown slightly silty very grave oble content and low boulder conten oarse and gravels cobbles and boui to sub rounded.	it. Gravels are Iders are und. Ily CLAY with it. Gravels are		1.10			AA131831	В	1.00		
2.0					2.50			AA131832	в	2.00		
3.0	with med and grav	ry stiff dark grey slightly silty very gr dium cobble content. Gravels are fir rels and cobbles are angular to sub	ne to coarse		2.50 3.00			AA131833	в	2.80		
	End of I	rial Pit at 3.00m										
4.0												
From	ndwater (Conditions										
	age at 2 r											
Stabil Stabi												
	ral Remai scanned I	rks ocation for services										<u> </u>
·												

1									I	REPORT N	JMBER	
	931	-	TRIAL PIT	RECO	RD					224	455	
CON	ITRACT	Avid Residential Development - A	vid Site , Sandy	/ford , Du	blin			TRIAL P	IT NO.	-		
LOG	GED BY	S.Hannon	CO-ORDINAT					DATE ST		Sheet 1 of 1 ED 10/03/2020 ETED 10/03/2020 JCB oles (ed) 359 0.50 0.50 1.10 2.20		
CLIE ENG	ENT INEER	Marlet Property Groupd Aecom	GROUND LE	VEL (m)				EXCAVA METHO		JCB		
									Sample	5	Pa)	ometer
		Geotechnical Description		Legend	(m) (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetrometer (KPa)
0.0	wood, p	GROUND - very clayey gravel with o lastic, concrete and metal pieces. C e and angular to sub rounded.	occasional Gravels are fine		0.40							
	Firm - s are fine made g	tiff dark brown slightly silty gravelly to coarse and angular to sub round round.	CLAY. Gravels led. Possible		0.40			AA131834	В	0.50		
- - -	content	and low boulder content. Gravels a and gravels cobbles and boulders a						1.10				
2.0	0.17				2.80			AA131836	В	2.20		
- - - - - -	cobble and cob	ery stiff dark grey gravelly CLAY wit content. Gravels are fine to coarse bles are angular to sub rounded. Trial Pit at 3.00m	n medium and gravels	<u> </u>	3.00			A131833	78	3.00		
- - - - - - - - - - - - - - - - - - -												
1	undwater	Conditions			<u> </u>		<u> </u>				<u> </u>	
Stat Stat	bility ole											
	eral Rema	irks location for services		<u></u>								

										REPORT N	UMBER	
	534		TRIAL PIT	D-ORDINATES ROUND LEVEL (m) Puession Puessi							455	
CON	TRACT	Avid Residential Development	- Avid Site , Sandy	rford , Du	blin			TRIAL P	IT NO.	ТрО		
LOG	GED BY	S.Hannon	CO-ORDINAT	ËS				DATE ST) 10/0	et 1 of 1 3/2020 3/2020	
CLIE	INEER	Marlet Property Groupd Aecom	GROUND LE	VEL (m)				EXCAVA METHO	TION	JCB		
									Sample	es	a)	neter
		Geotechnical Descriptio	'n	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	plastic a medium	GROUND - Stiff brown very grave ind metal pieces and high cobble boulder content. Gravels are fin cobbles and boulders are angula	e content and le to coarse and					AA131838	в	0.50		
1.0 	Gravels angular	k brown gravelly CLAY with low o are fine to coarse and gravels a to sub rounded.	and cobbles are	01010				AA131839	в	1.00		
2.0	Stiff dar content. cobbles	medium cobble gravels and					AA131840	в	2.00			
- - - - - - - -	End of 1	rial Pit at 3.00m		9 0 0	3.00		-	AA131841	В	3.00		
- - - 4.0 - - -												
	Indwater (Conditions										
Dry												
Stab Stab												
	eral Rema scanned	rks location for services										

										REPORT N	UMBER	
	55L	٦	FRIAL PIT	RECO	RD					22	455	
CON	TRACT	Avid Residential Development - A	vid Site , Sandy	ford , Du	blin			TRIAL P	IT NO.	Тр0		
LOG	GED BY	S.Hannon	CO-ORDINAT	ES				DATE ST		D 10/0	et 1 of 1 3/2020 3/2020	
CLIE	NT	Marlet Property Groupd	GROUND LEV	/EL (m)				EXCAVA	TION	JCB		<u></u>
			1					ŧ	Sample	es	a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	wood, p	GROUND - very clayey gravel with c lastic, concrete and metal pieces. G e and angular to sub rounded.	occasional Gravels are fine		0.50							
- -	content. cobbles ground.		ivels and ble made	0 0 0 0				AA131842		0.50		
	content	and low boulder content. Gravels a and gravels cobbles and boulders a	boulder content. Gravels are fine to els cobbles and boulders are angular to						В	1.00		
~ 2.0 - - -	cobble c	rry stiff dark grey very gravelly CLA content and low boulder content. Gr e and gravels and cobbles are ang l.	avels are fine	7 0 0 0 0 0 0 0 0 0	2.00			AA131844	В	2.00		
- - - - -	End of T	Frial Pit at 3.00m			3.00			AA131845	В	2.80		
4.0												
-												
Grou Dry	Indwater (Conditions										
Stabi Stabl												
	eral Rema scanned	rks location for services		<u></u>	,							

		ALL A LEW ME - LEU - ALL & ALL A LEW ME AND A MANY METAL AND								REPORT N	UMBER	
	CO-ORDINATES DATE ST									22	455	
CON	GGED BY S.Hannon GROUND LEVEL (m) SHEET										5	
LOG	GED BY	S.Hannon	CO-ORDINAT	ES				DATE S) 11/0:	et 1 of 1 3/2020 3/2020	
CLIE	NT NEER	Marlet Property Groupd Aecom	GROUND LE	VEL (m)				EXCAVA METHOI		JCB		
									Sample	5	a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	occasio	GROUND very dense very gravelly nal red brick metal plastic and conc n cobble content and medium bould	rete pieces					AA131846	в	0.50		
2.0	cobble c	k brown slightly silty very gravelly C content. Gravels are fine to coarse a bles are angular to sub rounded.	LAY with high and gravels		1.20			AA131847	В	1.20		
	content.	ry stiff dark grey gravelly CLAY with Gravels are fine to coarse and gra	n hìgh cobble vels and		2.70			AA131848	В	2.00		
3.0		are angular to sub rounded.		2	3.00			AA131849	В	3.00		
4.0												
	indvictor (Conditions				L	<u> </u>					
1_	nuwater (-onations										
Stabi Stabi												
Gene CAT	eral Remainscanned	rks location for services	<u></u>									
Dry Stabi Stabi Gene CAT												

	······································							1	REPORT N	UMBER	
IBBL	1	RIAL PIT	RECO	RD					22	455	
CONTRACT	Avid Residential Development - A	vid Site , Sand	yford , Du	blin			TRIAL P	IT NO.	Tp0		
LOGGED BY	S.Hannon	CO-ORDINAT	res				DATE S		11/0	et 1 of 1 3/2020 3/2020	
CLIENT ENGINEER	Marlet Property Groupd Aecom	GROUND LE	VEL (m)				EXCAVA METHO	ATION D	JCB		<u> . </u>
		1						Sample	s	a)	neter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
content coarse sub rou	GROUND very gravelly sand with hig t and medium boulder content. Grave and gravels cobbles and boulders a unded.	els are fine to					AA131850	B	0.50		
. content	ghtly sandy very gravelly CLAY with I t and low boulder content. Gravels ar and gravels cobbles and boulders a unded.	e fine to		1.10			AA136803	В	1.10		
2.0 Stiff - v	ery stiff dark grey very gravelly CLAY	with high		2.70			AA136804	В	2.00		
and col	content. Gravels are fine to coarse a bbles are angular to sub rounded. Trial Pit at 3.00m	nd graveis	0	3.00			AA136805	В	3.00		
~ 4.0											
Groundwater	Conditions										
Dry											
Stability Stable											
General Rema	arks location for services							<u></u>		<u></u>	<u> </u>

С. Г.	المنسو الم		TRIAL PIT	RECO	RD				F	REPORT N		
S	JEL/									224	455	
CON	TRACT	Avid Residential Development - /	Avid Site , Sandy	/ford , Du	blin			TRIAL PI	ΓNO.	Тр0	7	<u> </u>
								SHEET	<u>, , .</u>		t 1 of 1	
LOG	GED BY	S.Hannon	CO-ORDINAT	EO				DATE ST.			3/2020 3/2020	
CLIE		Mariet Property Groupd	GROUND LE	VEL (m)				EXCAVA METHOD		JCB		
ENGI	NEER	Aecom							amples			ä
							e			' 	(KPa)	tromet
		Geotechnical Description		Legend	(m) (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer
0.0		GROUND - Tar			0.10		 	+				
	content.	GROUND - very sandy gravel with I Gravels are fine to coarse and gra	high cobble wels and									
Ì	Stiff dar	are angular to sub rounded. k brown slightly silty very gravelly C	LAY with		0.40			AA136806	в	0,50		
	medium	cobble content. Gravels are fine to and cobbles are angular to sub rou	coarse and		0.60				D	0.00		
1.0	content.	k brown very gravelly CLAY with m Gravels are fine to coarse and gravels	edium cobble avels and					AA136807	в	1.00		
	cobbles	are angular to sub rounded.										
		cobbles are angular to sub rounded.										
2.0								AA136808	в	2.00		
ŀ	Stiff - ve	ery stiff dark grey gravelly CLAY wit	h medium	<u> </u>	2.50			******				
	cobble o	bles are angular to sub rounded.	and gravels	01010								
3.0	End of 7	Frial Pit at 3.00m			3.00			AA136809	в	3.00		
4.0												
Grou	ndwater (Conditions		<u> </u>				1				<u> </u>
Dry												
Stabi Stabl		***************************************										
Gene	ral Rema	rks										
CAT	scanned	location for services										

1.										REPORT N	UMBER	
ي ال	سمی ماکات	I	RIAL PIT	RECO	RD					22	455	
CON	TRACT	Avid Residential Development - A	vid Site , Sandy	ford , Du	blin			TRIAL P	IT NO.	Tp0		
LOG	GED BY	S.Hannon	CO-ORDINAT	ES	· i			DATE S		D 11/0	et 1 of 1 3/2020 3/2020	
CLIE	NT NEER	Mariet Property Groupd Aecom	GROUND LEV	/EL (m)				EXCAVA METHO	TION	JCB		
									Sample	es	a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE C cobble c and cob Stiff ligh high cob	GROUND - Tar GROUND - Dense very sandy grave content. Gravels are fine to coarse a bles and are angular to sub rounder t brown slightly sandy very gravelly oble content. Gravels are fine to coa and cobbles are angular to sub rour	nd gravels j/ CLAY with rse and	4019	0.10 0.30 0.70			AA136810	в	0.50		
- - - -	cobble c	wn slightly sandy very gravelly clay content. Gravels are fine to coarse a bles are angular to sub rounded.	with high nd gravels					AA136811	В	1.00		
2.0	cobble c	ry stiff dark grey very gravelly CLAY ontent. Gravels are fine to coarse a bles are angular to sub rounded.	′ with high nd gravels		2.00			AA136812	B	2.00		
3.0	End of T	rial Pit at 3.00m			3.00			AA136813	в	3.00		
4.0												
Grou Dry	ndwater (Conditions										
Stabi Stabi												
	eral Remainscanned I	rks location for services				*****						

1									F	REPORT N	UMBER	
	131 151	ŗ	RIAL PIT	D-ORDINATES ROUND LEVEL (m) Public for a set of the s						22	455	
CON	TRACT	Avid Residential Development - A	vid Site , Sandy	ford , Du	blin				IT NO.	Tp0		
			CO-ORDINAT	ES							et 1 of 1 3/2020	
LOG	GED BY	S.Hannon		(17 1 ()							3/2020	
CLIE ENG	INT INEER	Marlet Property Groupd Aecom	GROUND LE	vel (m)						JCB		
									Samples		[,] a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	with pla content cobbles	GROUND - Dense very sandy very g astic concrete and metal pieces and Gravels are fine to coarse and gra- and are angular to sub rounded. It brown slightly silty very gravelly C	a high cobble vels and		0.50			AA136814	. в	0.50		
- - - - 1.0	cobble (content. Gravels are fine to coarse a bles are angular to sub rounded.	ind gravels							1.00		
r	cobble of fine to c	ery stiff dark grey very gravelly CLA content and medium boulder conten oarse and gravels cobbles and bou to sub rounded.	t. Gravels are		1.50				-			
2.0									В	2.00		
3.0	End of	frial Pit at 3.00m			3.00							
4.0												
[Indwater (Conditions			<u></u>	<u> </u>	I			<u> </u>		I
Stab Stab												
	eral Rema scanned	rks location for services					1999 - B. C. M. L. B. C. B.					
1												

-	۱
8	ŀ
<u>I</u> <u></u>	
SGP.	
22455,GP	
ø	ľ

1										REPORT N	UMBER	
	33U	Т	RIAL PIT	RECO	RD					22	455	
CON	ITRACT	Avid Residential Development - A	vid Site , Sandy	ford , Du	blin			TRIAL P	IT NO.	Tp1		
LOGGED BY S.Hannon CO-ORDINATES BATES BATE Sheet 1 of 1 DATE STARTED DATE STARTED DATE COMPLETED 11/03/2020 DATE COMPLETED 11/03/2020 EXCAVATION METHOD Samples CO-ORDINATES Samples CO-ORDINATES DATE STARTED 11/03/2020 DATE COMPLETED 11/03/2020 DATE COMPLETED 11/03/2020 DATE STARTED 11/03/2020 DATE STARTES 10/00 DATE STARTES												
1	INT Martet Property Groupd EXCAVATION JCB INEER Aecom METHOD JCB Geotechnical Description E E											
									Sample	es	Pa)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0 - - - - - - - - - - - - - - - - - -	content. rounded Stiff brov Gravels angular Stiff brov Gravels	GROUND - very sandy gravel with m Gravels are fine to coarse and ang wn very gravelly CLAY with high cot are fine to coarse and gravels and to sub rounded. Probable made gro wn very gravelly CLAY with high cot are fine to coarse and gravels and to sub rounded.	ular to sub oble content. cobbles are ound. oble content.	9191919191919191919	0.10			AA 136818 AA 136819		0.50		
2.0	cobble c	ry stiff dark grey very gravelly CLAY content and low boulder content. Gra e and gravels cobbles and boulders bunded.		1.80			AA136820 AA136821	B	2.00			
4.0	End of T	rial Pit at 3.00m		<u>B</u>	3.00							
	undwater (Conditions			<u></u>			<u></u>		- L	<u> </u>	
Stab Stab												
	eral Rema scanned	rks location for services										

Concentration of the second								1	REPORT N		
0330/	i	RIAL PIT	RECO	RD					22	455	
CONTRACT Avid Resider	ntial Development - Av	vid Site , Sandy	ford , Du	blin			TRIAL P	IT NO.	Tp1		
LOGGED BY S.Hannon	r	CO-ORDINAT	ES				DATE S) 11/0:	et 1 of 1 3/2020 3/2020	
CLIENT Mariet Prope ENGINEER Aecom	erty Groupd	GROUND LE	/EL (m)				EXCAVA METHO		JCB		<u></u>
								Sample	:s	a)	meter
Geote	echnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0 MADE GROUND - Determedium cobble contermedium cobble conterned gravels and cobbles and cobble content. Gravel and cobbles are angul ground. Stiff brown very gravel content. Gravels are fill cobbles are angular to c	nt. Gravels are fine to re angular to sub roun dy very gravelly clay v ls are fine to coarse a lar to sub rounded. Pro- lly CLAY with medium ne to coarse and grav	coarse and ided. with high nd gravels obable made cobble		0.10 0.50			AA136822 AA136823		0.50		
Cobble content and lov	content. Gravels are fine to coarse and grave cobbles are angular to sub rounded. Stiff - very stiff dark grey very gravelly CLAY cobble content and low boulder content . Gra to coarse and gravels cobbles and boulders						AA136824 AA136825		2.00		
^{3.0} End of Trial Pit at 3.00	m			3.00							
Groundwater Conditions											
Stability Stable											
Dry Stability Stable General Remarks CAT scanned location for ser	wices							<u>.,.</u>		<u></u>	

1	A. Meridian	**********							F	REPORT N	UMBER	
j.	13L		TRIAL PIT	RECO	RD					224	455	
CON	TRACT	Avid Residential Development -	Avid Site , Sand	lyford , Du	blin		· · · ·	TRIAL PI	T NO.	Tp1:	2	
		•		-				- SHEET		-	t 1 of 1	
LOGO	GED BY	S.Hannon	CO-ORDINA	TES				DATE ST			3/2020	
CLIEI		Marlet Property Groupd		EVEL (m)				DATE CO EXCAVA METHOD	TION	JCB	3/2020	
ENGI	NEER	Aecom					1	1				5
									Samples		(Pa)	ometi
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	\ cobble c	GROUND dense very sandy grave content. Gravels are fine to coarse	l with medium and gravels		0.10							
	Stiff brow	bles are angular to sub rounded. wn slightly sandy very gravelly cla content. Gravels are fine to coarse bles are angular to sub rounded. I	y with medium and gravels Probable Made		0.50			AA136826	в	0.50		
1.0	content. cobbles	wn very gravelly CLAY with mediu Gravels are fine to coarse and gr are angular to sub rounded.	avels and		1.20			AA136827	в	1.00		
	cobble c	ery stiff dark grey gravelly CLAY wi content and high cobble content. O e and gravels cobbles and boulde bunded.	Fravels are fine									
2.0	Stiff yell	owish orange silty gravelly CLAY to coarse	with medium		2.20			AA136828	В	2.00		
	and cob	bles are angular to sub rounded.	and gravels					AA136829	в	2.50		
3.0	End of T	rial Pit at 3.00m			3.00							
4.0												
	ndwater (Conditions			I		1	<u>I</u>			I	ì
Dry												
Stabi Stabi			*****									
	eral Rema											
		location for services										

Appendix IV CBR by Plate Test

PLATE TEST REPORT SHEET (F3.1)		Applied Pressure/Settlement Curve	ent Curve		
Reference No. R110689 Contract Avid site - Sandyford Test No. PT1 load Location 39 carmanhall road Depth 500 mm Client Marlet Plate Diameter: 450 Test Method 85 1377; Part 9: 1990 Test4 - Incremental Loading Test		otion of soil al soil, place GROUND ve s Ref No.		IGSL	
λq		Depth 0.00 m bgl	0gl		
0 20 40 60	Pressure / Settlement 80	100 120		140 160	
0.00 -0.50 -0.50 -1.50 -1.50 -1.50 -1.50 -2.000 -2.0000 -2.000 -2.000 -2.00000 -2.0000 -2.00000 -2.0000 -2.0000 -2.00000 -2.0000 -2.00000 -2.0000 -2.0000 -2.00000 -2.0000 -2.00000 -2.00000 -2.00000 -2.00000 -2.00000 -2.00000 -2.000000 -2.00000 -2.00000 -2.00000000 -2.0000000000	Pressure (kN/m2)				
oracient at 1.25 min section intersection = 05 Modulus of subgrade reaction = 55 MPa/m Correction factor applied = 0.64 as per HD 25-26/10	Equivalent CBR value	Equivalent CBR value in accordance with NRA HD25-26/10		10.0 %	

PLATE	PLATE TEST REPORT SHEET	EET (F3.1)			A	pplied Press	Applied Pressure/Settlement Curve	nt Curve		
Reference No. Contract Test No. Location Depth Client	R110689 Avid site - Sandyford PT1 reload 39 carmanhall road 500 mm Aecom				Desc (nat MAD	Description of soil under test (natural soil, placed fill, sub-base) MADE GROUND very gravelly clay.	ider test ïil, sub-base) gravelly clay.			I WAR
Plate Diameter: Test Method	450 mm BS 1377: Part 9: 1990 Test 4 - Incremental Loading Test	est4 - Incremental	Loading Test						Tent	the Lowe
Technician Authorised by Date	S.Hannon V/V 10/03/2020				Dept	Sample Ref No. <u>N/</u> Depth <u>O</u> .	N/A 0.00 m bgl	-		
				Pressure / Settlement	Settlement					
0	50	100	150	200	250	300	350	400	450	500
0.20										
m), 40	; 									
nt (mi)	, , , ,							
emetri S				/	; ; ;					
00.1-										
07.1-									7	
-1.40	-			Pres	Pressure (kN/m2)		-			
Gradient at 1.25 Modulus of subgr Correction factor	Gradient at 1.25 mm settlement intersection = 365 Modulus of subgrade reaction = 234 MPa/m Correction factor applied = 0.64 as per HD 25-26/10	ion = 365 'm) 25-26/10		Equival	Equivalent CBR value in accordance with NRA HD25-26/10	accordance with N	RA HD25-26/10		123.5 %	

Appendix V BRE Digest 365 Tests

Soaka	way Desig	ign f -value from field tests	(F2C) IGS
	Avid site 1-sand	dyford Contract No. 22455	1
	SA01		
	Marlet		
	10/03/2020		
	f ground condition		Conund water
from	to	Description MADE CROUND firm conductory grouply along with accordingly motel and plastic	Ground water
0.00	0.20	MADE GROUND - firm sandy very gravelly clay with occasional metal and plastic.	
0.20	1.50	Firm -stiff very gravelly CLAY with medium cobble content.	None observed
		Gravels are fine to coarse and cobbles are angular to sub rounded.	
Notes:			
ield Data		Field Test	
Depth to	Elapsed	Depth of Pit (D) 1.50	m
Water	Time	Width of Pit (B) 0.50	m
(m)	(min)	Length of Pit (L) 1.80	m
(my	(11111)		
1.10	1.00	Initial depth to Water = 1.10	m
1.10	2.00	Final depth to water = 1.10	m
1.10	3.00	Elapsed time (mins)= 60.00	— '''
1.10	4.00		
1.10	5.00	Top of permeable soil	m
1.10	10.00	Base of permeable soil	m
1.10	15.00		
1.10	20.00	-	
1.10	25.00	-	
1.10	30.00	1	
1.10	40.00	Base area= 0.9	m2
1.10	50.00	*Av. side area of permeable stratum over test period=	m2
1.10	60.00	Total Exposed area = 2.74	m2
		E CONTRES DE L'UNERDER MANNEN	
		Infiltration rate (f) = Volume of water used/unit exposed area / unit time	1
		f= 0 m/min or	0 m/sec
	70.00	Depth of water vs Elapsed Time (mins)	
			1
,	<u>@</u> 60.00 –	•	4
	SU.00		
	<u>E</u> 30.00		1
-	40.00 -	•	1
a .	B 30.00		1
ī	Elapsed Time (mins) 40.00	•	-
	10.00		-
	0.00		
	W . W .		.20
	0.00	0 0.20 0.40 0.60 0.80 1.00 1.	
		Depth to Water (m)	.20

Contract: Test No. Client			dyford			Contract No. 2245	55
Date:	10/	03/2020					
	of gr	ound condit					
from	—	to	Descriptio				Ground w
0.00	–	0.20	MADE GROUND - firm sa	indy very gravelly c	:lay with occasio	nal metal and plastic.	
0.20	+	1.50	Firm -stiff very gravelly Gravels are fine to coars				None ob
	1						
Notes:							
Field Data	i			Field Test			
Depth to	1	Elapsed	٦	Depth of Pit (D)	0	1.50	m
Water		Time		Width of Pit (B)		0.50	m
(m)		(min)		Length of Pit (L		1.80	m
~		X7					
1.05		1.00		Initial depth to		1.05	m
1.05		2.00	_	Final depth to v		1.05	m
1.05	_	3.00	4	Elapsed time (n	nins)=	60.00	
1.05		4.00	4	Terref represent	(¹)		
1.05 1.05	—	5.00 10.00	4	Top of permeat Base of permea			m
1.05	+	15.00	-	Base of permea	ble son		m
1.05	+-	20.00	-				
1.05	+	25.00	-				
1.05		30.00	-				
1.05		40.00	-	Base area=		0.9	m2
1.05		50.00	*Av. side area of perme			2.07	m2
1.05	1	60.00		Total Exposed a	area =	2.97	m2
	+		Infiltration rate (f) =	Volume of wate	er used/unit exp	oosed area / unit time	1
					or	n 🦉 Tan Sala Marina (Sala Sala Sala Sala Sala Sala Sala Sa	0 m/sec
			1				
I		70.00 -	Depth of water	vs Elapsed Time (n	nins)		
1	(;	60.00 +				•	—
	nin	50.00				•	
	le(r						
Е	Ē	40.00				<u>.</u>	
l a	Elapsed Time(mins)	30.00 -				•	
a	sdr					٠	
	Ella	20.00					
l		10.00					
		0.00					
		+ 00.0 0.00	0 0.20	0.40 0.6	60 0.80	0 1.00	1.20
				Depth to Water			
l				lan 🦛 kanalan kanalan sa	(* ((*); *)		

Appendix VI Laboratory Data

a. Geotechnical Soil and Rock

	IVNAB	DELIVITED IN SCOPE REG NO. 1331	:			otion	Brown sandy gravelly CLAY	Brown sandy gravelly CLAY	Brown sandy gravelly CLAY	Brown sightly sandy, sightly gravely, CLAY	ravely CLAY	Brown sightly sandy, graveily, CLAY							NOTE: *Clause 3.2 of BS1377 is a "withdrawn" standard due to publication of ISO17892-1:2014	i scope or accreatiation. Any remaining material will be retained for one month.	Page	20 · 1 of 1
						^m Description	Brown sa	Brown sar	Brown sa	Brown sightly	Brown sandy gravely CLAY	Brown slightly					_		publication	llon. erial will be r	Date	27/5/20
			andyford			Classification (BS5930)	СL	C L	СL	C L C	CL	CL							dard due to	r accredita aining mat		
	Limits	, 4.4 & 5.3	Avid Development Sandyford			Liquid Lìmit Clause	4.4	4.4	4.4	4.4	4.4	4,4						ä	hdrawn" stand			HEren.
	k Plastic	s 3.2*, 4.3	Avid Deve			Preparation	WS	WS	WS	MS	WS	SM						Results apply to the sample as received.	1377 is a "with	Opimons and interpretations are outside the The results relate to the specimens tested.	Approved by	文字
ц	, Liquid 8	90, clause	Vame:			% <425µm	59	47	48	71	44	65						y to the samp	ise 3.2 of BS	a interpretatio elate to the si		
Test Report	Content	7:Part 2:19	Contract Name:			Plasticity Index	16	16	17	47	18	20					Remarks:	Results apply	NOTE: *Clau	Upinions and The results r		Aanager)
Tee	Moisture	ith BS137				Plastic Limit %	14	13	12	7 L	16	15					rbed	pe			approve reports	aboratory N
	Determination of Moisture Content, Liquid & Plastic Limits	cordance w	22455		22/05/20	Liquid Limit %	30	29	29	31	34	35					B - Bulk Distu	U - Undisturbed			ized to approv	H Byrne (Laboratory Manager)
	Determ	Tested in accordance with BS1377:Part 2:1990, clauses 3.2*, 4.3, 4.4 & 5.3	40.		ed:	Moisture Content %	11	12	13	16	14	17					Sample Type: B - Bulk Disturbed				Persons authorized to	
		Т	Contract No.		Date Tested:	Sample Type	В	В	8	В	В	B							tive mothod	uve method oint method		
				et	07/05/20	Lab. Ref	A20/1674	A20/1676	A20/1678	A20/1679	A20/1680	A20/1681					p	gq	C tromotor doffo:	trometer one p		boratory
	L		R111489	Aecom/Marlet		Depth (m)	3.0	3.0	3.0	8.0	3.0	6.0		 			WS - Wet sieved	AR - As received	NP - Non plastic	4.3 CORE PEREIONNELER OBRIGUES INEUROU 4.4 Cone Penetrometer one point method		erials La
ratory -	siness Park	ł	Report No.	Customer A	Samples Received:	Sample No. Depth (m)	135561	3	13553	13558	135083	130586					Preparation: V					IGSL Ltd Materials Laboratory
lGSL Ltd Materials Laboratory -	Unit J5, M7 Business Park Newhall, Naas	Co. Kildare 045 846176	L	0		BH/TP S	Bh01	Bh02	Bh03	Bh03	Bh04	Bh04					Notes: P			- 0		IGSI

Tmp: PI.II Rev 02/10

R111489.PI.xls

111

I TO I TO I TO A TO A TO A TO A TO A TO							Sample size did not meet the requirements of 651377		28 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29													10 100		GRAVEL	Date: Page no:	27/05/20 1 of 1	J Barrett (Quality Manager) H Byrne (Laboratory Manager)
TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)	Contract No: 22455 Report No. R111487 Contract: Avid Development Sandyford	c		6.00 Customer: Aecom/Marlet	Date Received 07/05/2020 Date Testing started 22/05/2020		Remarks Remarks and Clause 9.5 of BS13779art 2:1990 line loen supersolut by S017892-4:2016. Reserts gapt to sample as received. Sa	S	0.106	0				60uis								0.0001 0.001 0.01 0.1 1		CLAY Sieve size (mm) SAND	Approved by:		Persons authorised to approve report: J Barrett (Qua
Det Tested ir		COBBLES			<u></u>		GRAVEL		<u>ini an</u>					SAND	<u>.</u>						31-17 CLAI					ופאר רגנ	
	% passing	100	100	68	9 C	20 76	74	71	69	67	64	61	58	56	54	50	44	39	36	31	26	23	21	16			
	particle size	75 63	50	37.5	28	5 4	10	6.3	ъ	3.35	2	1.18	0.6	0.425	0.3	0.15	0.063	0.037	0.027	0.017	0.010	0.007	0.005	0.002			

			27			22/05/2020	th some cobbles	Sample size tid rot meet the requirements of 651377	S	2 2 3 5 5 5 5 3 5 5 3 5 5 5 5 5 5 5 5 5													1 10 100		GRAVEL	Date: Page no:	27/05/20 1 of 1	J Barrett (Quality Manager) H Byrne (Laboratory Manager)
TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)	Contract No: 22455 Report No. R111488 Contract: Avid Development Sandyford		Sample No. 7 Lab. Sample No. A20/1677	Sample Type: B		Date Received 07/05/2020 Date Testing started 22/05	Description: Brown slightly sandy, slightly gravely, SILT/CLAY with some cobbles	Remarks	s s	0.6 1.0 22,0 25,0 25,0 25,0 25,0 25,0 25,0 25,			80										0.0001 0.001 0.01 0.1		CLAY S/L T Sieve size (mm) SAND	Approved by:		Persons authorised to approve report: J Ba
Deterr Tested in ac		CORRIES	COULES					GRAVEL					(%)	SAND Boing	sed	906	-ine:	Perc			}					ופאר רנם ש	
	% passing	82	82	82	80	80	62	77 74	72	70	66	62	58	55	53	51	48	44	39	36	31	26	23	21	16			
	particle size	75	63	50	37.5	28	20	1 1	6.3	S	3.35	2	1.18	0.6	0.425	0.3	0.15	0.063	0.037	0.027	0.017	0.010	0.007	0.005	0.002			

THE ROUTING TO A TAKE THE ROUTING THE ROUTING TO A TAKE THE A TAKE THE A TAKE TAKE THE A TAKE THE A TAKE THE A					0				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													10 100		GRAVEL	Date: Page no:	27/05/20 1 of 1	J Barrett (Quality Manager) H Byrne (Laboratory Manager)
TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)	Contract No: 22455 Report No. R111486 Contract: Avid Development Sandvford	c		Depth (m) 8.00 Customer: Aecom/Marlet	Date Received 07/05/2020 Date Testing started 22/05/2020		Note: Class 83 of Classe 83 of Classe 83 of Classe 83 of 253177547 2:1990 have been supervised by 60017692.4:2016. Rearlis apply to sample as received.	S	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													0.0001 0.001 0.01 0.1 1		CLAY SILT Sieve size (mm) SAND	dV		Persons authorised to approve report: J Barrett (
Dete Tested in		COBBLES					GKAVEL			2				SAND												ווסאר בנט	
	% passing	100	100	100	100	92	91	88	86	84	78	73	67	65	63	60	54	47	44	39	34	31	27	19			
	particle size	75 63	50	37.5	28	14	10	6.3	ŝ	3.35	2	1.18	0.6	0.425	0.3	0.15	0.063	0.038	0.027	0.017	0.010	0.007	0.005	0.002			

ŝ

I The set is a start of the set o	,							recomments of 651377	G	01 02 02 02 02 02 02 02 02 02 02 02 02 02													10 100		EL	Page no:	3/20 1 of 1) H Byrne (Laboratory Manager)
								Sample size did not meet the requirements of B\$1377	9	2.3 2.3 2.3					\sum										GRAVEL	Date:	28/05/20	J Barrett (Quality Manager)
-			A20/1681			22/05/2020		apply to sample as received.	S	0.3 .42 0.6 31.1													, env		SAND			1
	R111490 d		Vo,		Aecom/Marlet	started	lly, CLAY	kete: Clases 9.2 and Clases 9.5 of 863 3779=1 2.1990 have been spectsbed by ISO 17832.4.2016 . Reafits sppby to sumple as received.	S	:1.0 901													0.1		Sieve size (mm)	Approved by:	M. France	Persons authorised to approve report:
ibution se 9.2 & 9.5	22455 Report No. R Avid Development Sandyford		Lab. Sample No.		Customer:	07/05/2020 Date Testing started	Brown slightly sandy, gravelly, CLAY	5 of 851377 <i>9</i> ar 2:1990 have been su															0.01		S/LT Sie			Persons autho
ORT Size Distr rt2:1990, claus not accredited)	22455 Avid Develo	BH04	130586	в	6.00	07/05/202	Brown slight	bote: Clause 9.2 and Clause 3.															0.001		CLAY		×	
TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5 (note: Sedimentation stage not accredited)	Contract No: Contract:	BH/TP :	Sample No.	Sample Type:	Depth (m)	Date Received	Description:	Remarks																			IGSL LTO MATERIAIS LADORATORY	
termination n accordance v (note: Se	00	8	S	S	Δ	Δ	Δ	R			1001	06) 80 	+ 02 %)	bui:	S C				20+	10+		0.0001				d materials	
Def		COBBLES				- de la constante de la consta		GRAVEL							SAND												ופאר רני	
	% passing	100	100	91	68	87	85	81 79	75	74	67	61	58	55	54	53	50	46	41	38	33	28	25	22	15			
	particle size	75	63	50	37.5	28	20	4 0	6.3	S	3.35	2	1.18	0.6	0.425	0.3	0.15	0.063	0.038	0.027	0.017	0.010	0.007	0.005	0.002			

		(Diametrial)) POINT LOAD ST	IRENGTH	(Diametrial) POINT LOAD STRENGTH INDEX TEST DATA				
Contract: Avid Site, Sandyford Contract no. 22455	Contract: Avid Site, Sandyf Contract no. 22455 Date of test: 16.0042020	yford	Sample Type: Core	ore					
RC No.	Depth	D (Diameter)	P (failure load) kN	ц.	ls (index strength) Mpa	ls(50) (index strength) Mna	*UCS MPa	Tvne	Orienation
RC02	8.8	78	8.0	1.222	1.31	1.61	1		//
	8.9	78	10.0	1.222	1.64	2.01	40	סי	1
	10.9	78	4.0	1.222	0.66	0.80	16	o	11
RC04	12.8	78	o, F	1.222	0.16	0.20	ক	סי	1
									;
				,					
Star	Statistical Summary Data	lary Data	Is(50)	ncs*	*UCS Normal	*UCS Normal Distribution Curve	/e	Abbrev	Abbreviations
Number of Sa	Number of Samples Tested	0	4 00 0	4. 2	0.12				gular
Averade			1.15	7 7	0.1			a jaxial h htork	
Maximum			2.01	40	0.08			d dian	diametral
Standard Dev.			0.81	16	0.06				
Upper 95% Confidence Limit	Upper 95% Confidence Limit	nit.	2.74	54.82	0.04			approx. orientation	rientation
	מווומפורפ רוו	111	°+-0-	40.0-	0.02			to planes or weakness/bedding	to planes of akness/bedding
Comments:								U Junkr	unknown
*UCS taken as k x Point Load Is(50):	s k x Point Lc	oad ls(50): k=		20	0 100	0 200	300	P perpend	perpendicular
								1/ 1/1010	

ř.

Appendix VI Laboratory Data

b. Chemical and Environmental

Chemtest The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL

2

Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-10240-1		
Initial Date of Issue:	22-Apr-2020		
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	22455 Avid Development Sandyford (Aecom / Marlet)		
Quotation No.:		Date Received:	08-Apr-2020
Order No.:		Date Instructed:	14-Apr-2020
No. of Samples:	21		
Turnaround (Wkdays):	7	Results Due:	22-Apr-2020
Date Approved:	22-Apr-2020		
Approved By:	,		
Ulps Mary	. ×		

Details:

Glynn Harvey, Technical Manager

Chemtest The right chemistry to deliver results Project: 22455 Avid Development Sandyford (Aecom / Marlet)

Results - Leachate

The second se																	
Client: IGSL	Services	会長に	Chei	mtest Job N	Chemtest Job No.: 20-10240 20-10240 20-10240 20-10240 20-10240 20-10240	0 20-10240	20-10240	20-10240	20-10240		20-10240	20-10240 20-10240	20-10240	20-10240 20-10240	20-10240	20-10240 20-10240	20-10240
Quotation No.:			Chemte	Chemtest Sample ID.:	D.: 996074	996075	996076	996077	996078	996079	996080	996081	996082	996083	996084	996085	996086
Order No.:			Clie	Client Sample Ref .:	ef.: 131830	131831	131834	131838	131839	131842	131846	131847	131850	136807	136811	136814	136819
			ŝ	Sample Location:	on: TP1	TP1	TP2	TP3	TP3	TP4	TP5	TP5	TP6	TP7	TP8	TP9	TP10
				Sample Type:	pe: SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			~	Top Depth (m):	m): 0.50	1.00	0.50	0.50	1.00	0.50	0:20	1.20	0.50	1.00	1.00	0.50	1.00
			Bot	Bottom Depth (m):	m): 0.50	1.00	0.50	0.50	1.00	0.50	0:20	1.20	0.50	1.00	1.00	0.50	1.00
Determinand	Accred.	SOP		Type Units LOD	0	Steel and	同一次中心了第二章。 第二章	two to the co	田田市のこと見	The second second	11 - R - 12	副一条の日	Distance of the second	Star Sular	18 - 3 - 4 - 18 - 18 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		Service and
рН	5	1010	10:1	Ż	N/A 8.5	8.3	8.7	8.4	8.8	8.9	10.2	8.5	10.6	9.3	9.3	10.4	9.4
Ammonium	D	1220	10:1	mg/l 0.050	50 0.058	0.14	0.21	1.7	< 0.050	0.18	< 0.050	0.16	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Ammonium	z	1220	10:1	mg/kg 0.10	10 0.69	1.6	2.7	19	0.48	2.5	0.64	1.9	0.63	0.85	0.30	0.52	0.25
Boron (Dissolved)		1450	10:1	µg/I 20	0 27	26	29	32	< 20	29	< 20	< 20	23	< 20	< 20	20	< 20
Boron (Dissolved)	∍	1450	10:1	mg/kg 0.20	20 0.27	0.26	0.29	0.32	< 0.20	0.29	< 0.20	< 0.20	0.23	< 0.20	< 0.20	0.20	< 0.20
															3		

4

١

ļ

.

i

Marier									
Client: IGSL		10,000	Cher	ntest Jo	b No.:	Chemtest Job No.: 20-10240	20-10240	20-10240	
Quotation No.:		0	chemte	Chemtest Sample ID.:	ole ID.:	996087	996088	996089	
Order No.:			Clier	Client Sample Ref .:	e Ref.:	138822	136827	13559	
			Sa	Sample Location:	cation:	TP11	TP12	BH1	
				Sample	Sample Type:	SOIL	SOIL	SOIL	
				Top Depth (m):	th (m):	0.50	1.00	1.00	
			Bot	Bottom Depth (m):	th (m):	0.50	1.00	1.00	
Determinand	Accred.	SOP	Type	Units	LOD	"The state of the	Name and a second	PART NAME	
Hd	Э	1010	10:1		N/A	9.4	9.2	9.1	
Ammonium	Э	1220	10:1	mg/l	0.050	< 0.050	< 0.050	< 0.050	
Ammonium	z	1220	10:1	mg/kg	0.10	0.29	0.51	0.42	
Boron (Dissolved)	n	1450	10:1	1/61	20	< 20	< 20	< 20	
Boron (Dissolved)	n	1450	10:1	mg/kg	0.20	< 0.20	< 0.20	< 0.20	

ļ

I

ţ,

Client: IGSL Chemtest		Chet	Chemtest Job No.:	ob No.:	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240
Quotation No.:	1	Chemte	Chemtest Sample ID .:	ple ID.:	996074	996075	96076	996077	996078	996079	996080	996081	996082
Order No.:		Clie	Client Sample Ref .:	le Ref .:	131830	131831	131834	131838	131839	131842	131846	131847	131850
		ŝ	Sample Location:	ocation:	TP1	TP1	TP2	TP3	TP3	TP4	TP5	TP5	TP6
			Sampl	Sample Type:	SOIL								
		~	Top Depth (m):	oth (m):	0.50	1.00	0.50	0.50	1.00	0.50	0.50	1.20	0.50
		Bot	Bottom Depth (m):	oth (m):	0.50	1.00	0.50	0.50	1.00	0.50	0.50	1.20	0.50
			1222		COVENTRY								
Determinand	Accred.	SOP	Units	LOD		語のないない	Section and all of	the state of the second	Start Loop 20	A THE REAL PROPERTY OF	高力なたったという	Rolling and the	また。 と言語の語を言
ACM Type	n	2192		N/A	ĩ	E	5	1	Ē	1	I;	•	I.
Asbestos Identification	D	2192	%	0.001	No Asbestos Detected								
ACM Detection Stage	∍	2192		N/A	ē	E	E		£)	ē	U	•	Ľ
Moisture	z	2030	%	0.020	15	16	12	13	8.6	8.2	5.9	17	7.3
pH (2.5:1)	z	2010		4.0									
Boron (Hot Water Soluble)	Σ	2120	mg/kg	_	0.68	0.49	< 0.40	0.48	< 0.40	< 0.40	< 0.40	0.42	0.53
Magnesium (Water Soluble)	z	2120	g/l	0.010									
Sulphate (2:1 Water Soluble) as SO4	W	2120		0.010									
Total Sulphur	M	2175		0.010									
Sulphur (Elemental)	W	2180	mg/kg	1.0	[A] 3.7	[A] < 1.0							
Chloride (Water Soluble)	W	2220	g/I	0.010									
Nitrate (Water Soluble)	z	2220		0.010									
Cyanide (Total)	Σ	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	z	2325	mg/kg	0.50	[A] 3.2	[A] 2.2	[A] 8.1	[A] 9.2	[A] 5.2	[A] 6.5	[A] 7.1	[A] 2.1	[A] 7.2
Ammonium (Water Soluble)	M	2120	l/b	0.01									
Sulphate (Acid Soluble)	Σ	2430		0.010	[A] 0.074	[A] 0.015	[A] 0.029	[A] 0.054	[A] 0.031	[A] 0.038	[A] 0.45	[A] 0.045	[A] 0.11
Arsenic	M	2450	mg/kg	1.0	18	14	21	20	24	22	18	14	20
Barium	M	2450	mg/kg	10	120	98	71	91	46	47	49	68	61
Cadmium	×	2450	mg/kg	0.10	2.1	1.1	2.4	2.9	1.6	2.1	0.67	2.6	1.2
Chromium	M	2450	mg/kg	1.0	21	26	16	18	13	12	15	20	20
Molybdenum	W	2450	mg/kg	2.0	2.8	2.8	3.5	3.4	2.9	3.7	< 2.0	3.9	< 2.0
Antimony	z	2450	mg/kg	2.0	< 2.0	< 2.0	2.0	2.1	< 2.0	< 2.0	< 2.0	2.2	< 2.0
Copper	W	2450	mg/kg	0.50	27	21	26	32	20	22	15	29	19
Mercury	W	2450		0.10	0.17	0.15	< 0.10	0.16	< 0.10	< 0.10	< 0.10	0.11	< 0.10
Nickel	W	2450	mg/kg	0.50	41	39	48	53	37	41	22	56	32
Lead	M	2450	mg/kg	0.50	59	34	31	84	19	21	12	28	17
Selenium	W	2450	mg/kg	0.20	0.83	0.50	0.35	0.54	< 0.20	0.29	< 0.20	0.63	< 0.20
Zinc	W	2450	mg/kg	0.50	93	140	86	66	59	67	52	110	68
Chromium (Trivalent)	z	2490	mg/kg	1.0	- 21	26	16	18	13	12	15	20	20
Chromium (Hexavalent)	z	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	W	2625	%	0.20	[A] 1.6	[A] 0.50	[A] 0.52	[A] 0.98	[A] 0.35	[A] 0.35	[A] 0.31	[A] 0.61	[A] < 0.20
Mineral Oil	z	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	150	< 10	< 10
Aliphatic TPH >C5-C6	z	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	z	2680	mg/kg		[A] < 1.0								
Aliphatic TPH >C8-C10	W	2680	mg/kg	_	[A] < 1.0								
Aliphatic TPH >C10-C12	W	2680	2680 mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0

Page 4 of 33

Project: 22455 Avid Development Sandyford (Aecom / Marlet)

Client: IGSI	and a solution	Chemtest Job No.:	Job No.:	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240
Quotation No.:		Chemtest Sample ID.:	mple ID.:	996074	996075	996076	996077	996078	996079	996080	996081	996082
Order No.:		Client Sample Ref.	nple Ref .:	131830	131831	131834	131838	131839	131842	131846	131847	131850
		Sample	Sample Location:	TP1	TP1	TP2	TP3	TP3	TP4	TP5	TP5	TP6
		San	Sample Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top [Top Depth (m):	0.50	1.00	0.50	0.50	1.00	0.50	0.50	1.20	0.50
		Bottom [Bottom Depth (m):	0.50	1.00	0.50	0.50	1.00	0.50	0.50	1.20	0.50
		Asbe	Asbestos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP Units	IS LOD	に行んでありて		and the second	The state		100 H 201 TOL	いいの ない ないない	いたの世界に	Prove Standing
Aliphatic TPH >C12-C16	W	2680 mg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	M	2680 mg/kg	(g 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	W	2680 mg/kg	(g 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C35-C44	z	2680 mg/kg	(g 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	z	2680 mg/kg		[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	z	2680 mg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C7-C8	z	2680 mg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C8-C10	Σ	2680 mg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	Ø	2680 mg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16	W	2680 mg/kg	(g 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21	∍	2680 mg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C21-C35	W	2680 mg/kg	_	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	z	2680 mg/kg	vg 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	z	2680 mg/kg	_	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	z	2680 mg/kg	kg 10.0	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10
Benzene	Z		g 1.0-	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Toluene	Ø	2760 µg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	Σ	2760 µg/kg	g 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	M	2760 µg/kg	g 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
o-Xylene	W	2760 µg/kg	_	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	W	2760 µg/kg	g 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Naphthalene	Σ	2800 mg/kg	vg 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	z	2800 mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	Σ	2800 mg/kg	_	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	×	2800 mg/kg	_	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	×	2800 mg/kg	_	< 0.10	< 0.10	< 0.10	< 0.10	⁻ < 0.10	< 0.10	⁻ < 0.10	< 0.10	< 0.10
Benzo[jjfluoranthene	z	2800 mg/kg	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	Σ	2800 mg/kg	(g) 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	Σ	2800 mg/kg		0.19	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	Σ	2800 mg/kg		0.17	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	W	2800 mg/kg	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	Ø	2800 mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	W	2800 mg/kg	<g 0.10<="" p=""></g>	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	Σ	2800 mg/kg	vg 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	Z	2800 mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	Σ	2800 mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	z	2800 mg/kg	4g 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

1

Page 5 of 33

Results - Soil

Project: 22455 Avid Development Sandyford (Aecom / Marlet)

Froject. 22433 Avia Developilient Sanuyiota (Aeconii / Mariet)	NIOLU ARL	OIII / Main	21									
Client: IGSL	BASSALLAND	Chemte	Chemtest Job No.:	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240
Quotation No.:		Chemtest (Chemtest Sample ID.:	996074	996075	920966	996077	996078	620966	996080	996081	996082
Order No.:		Client S	Client Sample Ref .:	131830	131831	131834	131838	131839	131842	131846	131847	131850
		Samp	Sample Location:	TP1	TP1	TP2	TP3	TP3	TP4	TP5	TP5	TP6
		ŝ	Sample Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top	Top Depth (m):	0.50	1.00	0.50	0.50	1.00	0.50	0.50	1.20	0.50
		Bottorr	Bottom Depth (m):	0.50	1.00	0.50	0.50	1.00	0.50	0.50	1.20	0.50
		As	Asbestos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP U	SOP Units LOD	No. of the second	a station of the second	and a state	語を行いた。	· · · · · · · · · · · · · · · · · · ·	的見始的見な言い	のないないないないない	「「人生」」を見ていた。	STATING'S
Benzo[g,h,i]perylene	Μ	2800 mg	2800 mg/kg 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Coronene	N	2800 mg/kg	g/kg 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 17 PAH's	N	2800 mg/kg	g/kg 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
PCB 28	n	2815 m	2815 mg/kg 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
PCB 52	n	2815 mg	2815 mg/kg 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
PCB 90+101	n	2815 m	2815 mg/kg 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
PCB 118	D	2815 m	2815 mg/kg 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
PCB 153	D	2815 m	2815 mg/kg 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
PCB 138	n	2815 m	2815 mg/kg 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
PCB 180	D	2815 m	2815 mg/kg 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Total PCBs (7 Congeners)	D	2815 mg/kg	g/kg 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10
Total Phenols	Z	2920 m	2920 mg/kg 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

*

St results
Tight of

	F
*	L
Φ	L
T	ľ
=	l
10	L
5	ł
-	I
~	L
-	L
5	L
-	L
0	L
Õ	I
~	L
y	l
◄	l
100	L
-	1
-	I
	I
-	I
0	I
-	۱
2	1
5	L
ē	ŀ
-	I
0	l
n	ł
•••	I
-	L
	l
-	I
<u>_</u>	I
F	I
-	L
	ł
0	I
<u> </u>	l
(D)	ł
~	L
5	
Ψ	L
	t
_	ł
-	L
.=	ı
>	ł
-	t
-	t
	L
	Ł
-0	1
-	1
Ñ	ſ
2.1	t
11	L
	t
-	1
ပ	ſ
ā	t
	ŧ
0	I.
~~	t

Project: 22455 Avid Development Sandyford (Aecom / Marlet)	Ivford (Aec	/ mo	n / Marlet)	· vy vo	UNCUT DC	ON 100AD	00 10040	00 10040	0100100	0100100	0100100	UNCUT UC	00 10240
Citetitic No -		homod	Chomtoet Sample ID -		005002	005004	006005	00500	04201-02		006000	006000	006001
Quotation No.:	5	men	lest san	bie in.:	880083	330084	220022	88008D	190066	220022	89008A	ABOAO	1 20025
Order No.:		ē	Client Sample Ref.	ole Ref .:	136807	136811	136814	136819	138822	136827	13559	135560	1
			Sample Location:	ocation:	7P7	8dT	6d1	TP10	114T	TP12	BH1	BH1	BH2
			Samp	Sample Type:	SOIL	SOIL	SOIL						
			Top De	Top Depth (m):	1.00	1.00	0.50	1.00	0.50	1.00	1.00	2.00	1.00
		m	Bottom Depth (m):	pth (m):	1.00	1.00	0.50	1.00	0.50	1.00	1.00	2.00	1.00
			Asbes	Asbestos Lab:	COVENTRY								
Determinand	Accred.	SOP	^o Units	LOD	Contract Sale	「日本」ないの		A WA SHARE	の言い、中国の	のないないの	of All the state		三次の市政
ACM Type	n	2192		NIA	Đ	6	-	-	-		•		
Asbestos Identification	þ	2192	%	0.001	No Asbestos Detected								
ACM Detection Stage	∍	2192		N/A		1	1		I	1	T		
Moisture	z	2030	% (0.020	11	9.1	8.5	10	9.1	10	10	12	12
pH (2.5:1)	z	2010		4.0								[A] 8.6	[A] 8.7
Boron (Hot Water Soluble)	W	2120) mg/kg	0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40		
Magnesium (Water Soluble)	z	2120	l/g (0.010								< 0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4	Ø	2120	l/g (0.010								< 0.010	< 0.010
Total Sulphur	Σ	2175		0.010								[A] 0.033	[A] 0.036
Sulphur (Elemental)	W	2180) mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Chloride (Water Soluble)	Þ	2220		0.010								[A] < 0.010	[A] < 0.010
Nitrate (Water Soluble)	z	2220		0.010								< 0.010	< 0.010
Cyanide (Total)	W	2300	0 mg/kg	-	[A] < 0.50								
Sulphide (Easily Liberatable)	z	2325		0.50	[A] 6.6	[A] 7.8	[A] 9.3	[A] 8.3	[A] 8.3	[A] 7.6	[A] 6.6		
Ammonium (Water Soluble)	W	2120		0.01								0.02	0.04
Sulphate (Acid Soluble)	W	2430	% (0.010	[A] 0.011	[A] 0.013	[A] 0.083	[A] 0.012	[A] 0.033	[A] 0.010	[A] 0.017	[A] 0.018	[A] < 0.010
Arsenic	W	2450	0 mg/kg	1.0	23	22	23	23	24	21	23		
Barium	M	2450) mg/kg	10	71	63	65	100	50	62	71		
Cadmium	M	2450	0 mg/kg	0.10	2.3	1.9	1.2	2.0	1.8	2.0	2.0		
Chromium	M	2450	0 mg/kg	1.0	15	13	15	15	14	14	14		
Molybdenum	W	2450	0 mg/kg		3.4	3.4	2.5	3.7	3.4	3.6	3.5		
Antimony	z	2450	0 mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		
Copper	Ø	2450	0 mg/kg		26	22	19	26	23	26	26		
Mercury	¥	2450	0 mg/kg	_	< 0.10	< 0.10	0.11	< 0.10	< 0.10	< 0.10	< 0.10		
Nickel	Σ	2450		_	51	41	32	47	42	46	46		
Lead	Σ	2450	0 mg/kg		21	18	20	19	23	18	19		
Selenium	Σ	2450			< 0.20	0.41	0.30	1.4	0.24	1.6	0.37		
Zinc	Ø	2450	0 mg/kg	0.50	79	76	64	76	67	75	74		
Chromium (Trivalent)	z	2490	0 mg/kg		15	13	15	15	14	14	14		
Chromium (Hexavalent)	z	2490	Ε	_	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Total Organic Carbon	M	2625	2 %	0.20	[A] 0.28	[A] 0.35	[A] 0.56	[A] 0.38	[A] 0.31	[A] 0.34	[A] 0.34		
Mineral Oil	z	2670	D mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
Aliphatic TPH >C5-C6	z	2680	D mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aliphatic TPH >C6-C8	z	2680			[A] < 1.0								
Aliphatic TPH >C8-C10	Δ	2680			[A] < 1.0								
Aliphatic TPH >C10-C12	Μ	2680	D mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
						1]						

Page 7 of 33

<u>Project: 22455 Avid Development Sandyford (Aecom / Marlet)</u>

	au ninin	Che	Chemtest Job No.:	ob No.:	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240
Quotation No.:		Chemt	Chemtest Sample ID.:	ple ID.:	996083	996084	996085	996086	996087	996088	996089	996090	996091
Order No.:		Cij	Client Sample Ref .:	ole Ref .:	136807	136811	136814	136819	138822	136827	13559	135560	-
		S	Sample Location:	ocation:	TP7	TP8	TP9	TP10	TP11	TP12	BH1	BH1	BH2
			Samp	Sample Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	Top Depth (m):	1.00	1.00	0.50	1.00	0.50	1.00	1.00	2.00	1.00
		B	Bottom Depth (m):	pth (m):	1.00	1.00	0.50	1.00	0.50	1.00	1.00	2.00	1.00
			1.1		COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD	THE STATE STATE	現在主要認知	No. of the second s	日本134 m (2) 日 日		自然的建筑的			「「「「「
Aliphatic TPH >C12-C16	Ø	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aliphatic TPH >C16-C21	Ø	2680		1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aliphatic TPH >C35-C44	z	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Total Aliphatic Hydrocarbons	z	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0		
Aromatic TPH >C5-C7	z	2680			[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aromatic TPH >C7-C8	z	2680	mg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aromatic TPH >C8-C10	M	2680	mg/kg		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aromatic TPH >C10-C12	Ø	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aromatic TPH >C12-C16	M	2680	mg/kg	1	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aromatic TPH >C16-C21	n	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aromatic TPH >C21-C35	Σ	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Aromatic TPH >C35-C44	z	2680			[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Total Aromatic Hydrocarbons	z	2680	mg/kg	_	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0		
Total Petroleum Hydrocarbons	z	2680	mg/kg	10.0	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10		
Benzene	Σ	2760	hg/kg	_	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Toluene	Σ	2760			[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Ethylbenzene	Σ	2760	hg/kg	_	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
m & p-Xylene	Σ	2760	hg/kg	_	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
o-Xylene	Σ	2760) µg/kg	_	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Methyl Tert-Butyl Ether	Σ	2760	hg/kg	_	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		
Naphthalene	Σ	2800		_	< 0.10	< 0.10	0.14	< 0.10	< 0.10	< 0.10	< 0.10		
Acenaphthylene	z	2800	mg/kg	_	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Acenaphthene	Σ	2800	mg/kg		< 0.10	< 0.10	0.31	< 0.10	< 0.10	< 0.10	< 0.10		
Fluorene	Σ	2800	mg/kg	_	< 0.10	< 0.10	0.19	< 0.10	< 0.10	< 0.10	< 0.10		
Phenanthrene	Σ	2800	mg/kg	_	< 0.10	< 0.10	1.7	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[j]fluoranthene	z	2800	mg/kg	_	< 0.10	< 0.10	0.27	< 0.10	< 0.10	< 0.10	< 0.10		
Anthracene	Σ	2800	mg/kg	-	< 0.10	< 0.10	0.25	< 0.10	< 0.10	< 0.10	< 0.10		
Fluoranthene	Σ	2800	mg/kg		< 0.10	< 0.10	1.5	< 0.10	< 0.10	< 0.10	< 0.10		
Pyrene	Σ	2800		_	< 0.10	< 0.10	1.5	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[a]anthracene	W	2800	mg/kg	0.10	< 0.10	< 0.10	0.51	< 0.10	< 0.10	< 0.10	< 0.10		
Chrysene	M	2800	mg/kg	_	< 0.10	< 0.10	0.53	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[b]fluoranthene	Δ	2800	mg/kg	0.10	< 0.10	< 0.10	0.56	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[k]fluoranthene	Σ	2800	mg/kg		< 0.10	< 0.10	0.25	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[a]pyrene	Σ	2800	mg/kg		< 0.10	< 0.10	0.54	< 0.10	< 0.10	< 0.10	< 0.10		
Indeno(1,2,3-c,d)Pyrene	Σ	2800	mg/kg	_		< 0.10	0.27	< 0.10	< 0.10	< 0.10	< 0.10		
Dibenz(a,h)Anthracene	z	2800	mg/kg	0.10	< 0.10	< 0.10	0.11	< 0.10	< 0.10	< 0.10	< 0.10		

Page 8 of 33

St esults
deliver
OF
1

Project: 22455 Avid Development Sandyford (Aecom / Marlet)

LIGECT: 22433 CAN DEVELOPHIEL CHIMICALO A COULLY MAILEL	In I NICIA	This waiter										
Client: IGSL		Chemtest Job No.:	: 'ON 0	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240	20-10240
Quotation No.:		Chemtest Sample ID.:	le ID.:	996083	996084	996085	996086	996087	996088	996089	060966	996091
Order No.:		Client Sample Ref .:	Bef.:	136807	136811	136814	136819	138822	136827	13559	135560	Ŧ
		Sample Location:	ation:	TP7	TP8	TP9	TP10	TP11	TP12	BH1	BH1	BH2
		Sample Type:	Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):	h (m):	1.00	1.00	0.50	1.00	0.50	1.00	1.00	2.00	1.00
		Bottom Depth (m):	h (m):	1.00	1.00	0.50	1.00	0.50	1.00	1.00	2.00	1.00
		Asbestos Lab:	-	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP Units LOD	LOD	R. P. R. L. L. S. L.	The set to see	Service and the service of the servi		S. STARS	「日本」を加え、主な思	国の名は日本部で	144 191 161	2. S.B.B.B.M.
Benzo[g,h,i]perylene	Δ	2800 mg/kg	0.10	< 0.10	< 0.10	0.37	< 0.10	< 0.10	< 0.10	< 0.10		
Coronene	z	2800 mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Total Of 17 PAH's	z	2800 mg/kg	2.0	< 2.0	< 2.0	8.7	< 2.0	< 2.0	< 2.0	< 2.0		
PCB 28	n	2815 mg/kg 0.010	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		
PCB 52	n	2815 mg/kg 0.010	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		
PCB 90+101	n	2815 mg/kg 0.010	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		
PCB 118	D	2815 mg/kg 0.010	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		
PCB 153	n	2815 mg/kg 0.010	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		
PCB 138	n	2815 mg/kg 0.010	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		
PCB 180	D	2815 mg/kg 0.010	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		
Total PCBs (7 Congeners)	D	2815 mg/kg	0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10	[A] < 0.10		
Total Phenols	M	2920 mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30		

ţ.

ţ

ł

ŧ

Client: IGSL	日本語のない	Cher	Chemtest Job No.:	b No.:	20-10240	20-10240	20-10240
Quotation No.:		chemte	Chemtest Sample ID.:	ple ID.:	996092	996093	996094
Order No.:		Clier	Client Sample Ref .:	le Ref.:	13551	13553	130581
		ŝ	Sample Location:	ocation:	BH3	BH3	BH4
			Sampl	Sample Type:	SOIL	SOIL	SOIL
			Top Depth (m):	oth (m):	1.00	3.00	1.00
		Bot	Bottom Depth (m):	oth (m):	1.00	3.00	1.00
			Asbest	Asbestos Lab:			
Determinand	Accred.	SOP	Units	LOD	前日日本10日	用しる言語	新生命
ACM Type	∍	2192		N/A			
Asbestos Identification	∍	2192	%	0.001			
ACM Detection Stage	∍	2192		N/A			
Moisture	z	2030	%	0.020	18	12	10
pH (2.5:1)	z	2010		4.0	[A] 8.4	[A] 8.5	[A] 8.5
Boron (Hot Water Soluble)	M	2120	mg/kg	0.40			
Magnesium (Water Soluble)	z	2120	l/b	0.010	< 0.010	< 0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4	W	2120	g/I	0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	×	2175	%	0.010	[A] 0.055	[A] 0.11	[A] 0.044
Sulphur (Elemental)	W	2180	mg/kg	1.0			
Chloride (Water Soluble)	Σ	2220	l/6	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Nitrate (Water Soluble)	z	2220	l/6	0.010	< 0.010	< 0.010	< 0.010
Cyanide (Total)	W	2300	mg/kg	0.50			
Sulphide (Easily Liberatable)	z	2325	mg/kg	0.50			
Ammonium (Water Soluble)	W	2120	l/6	0.01	2.8	0.07	0.03
Sulphate (Acid Soluble)	W	2430	%	0.010	[A] 0.027	[A] < 0.010	[A] 0.022
Arsenic	M	2450	mg/kg	1.0			
Barium	W	2450	mg/kg	10			
Cadmium	Σ	2450	mg/kg	0.10			
Chromium	W	2450	mg/kg	1.0			
Molybdenum	W	2450	mg/kg	2.0			
Antimony	N .	2450	mg/kg	_			
Copper	W	2450		0.50			-
Mercury	Σ	2450	mg/kg				
Nickel	Ø	2450	mg/kg	_	1		
Lead	Ø	2450	mg/kg	_			
Selenium	Ø	2450	mg/kg	_			
Zinc	Z	2450	mg/kg	0.50			
Chromium (Trivalent)	z	2490	mg/kg	_			
Chromium (Hexavalent)	z	2490	mg/kg	0.50			
Total Organic Carbon	M	2625	%	0.20			
Mineral Oil	z	2670	mg/kg	10			
Aliphatic TPH >C5-C6	z	2680	mg/kg	1.0			
Aliphatic TPH >C6-C8	z	2680	mg/kg	1.0			
Aliphatic TPH >C8-C10	Σ	2680	mg/kg	1.0			

1

Page 10 of 33

ł

i

R

Client: IGSL	ALL ALL ALL	Chemt	Chemtest Job No.:	D.: 20-10240	40	20-10240	20-10240
Quotation No.:		chemtest	Chemtest Sample ID .:	0.: 996092	32	996093	996094
Order No.:		Client	Client Sample Ref .:	if.: 13551	-	13553	130581
		Sam	Sample Location:			BH3	BH4
		S	Sample Type:	e: SOIL	_	SOIL	SOIL
		To	Top Depth (m):			3.00	1.00
		Bottor	Bottom Depth (m):	n): 1.00		3.00	1.00
		A	Asbestos Lab:	lb:			
Determinand	Accred.	SOP L	Units LOD	0	Seal of	1	AN ALLS
Aliphatic TPH >C12-C16	W		mg/kg 1.0				
Aliphatic TPH >C16-C21	W		mg/kg 1.0				
Aliphatic TPH >C21-C35	W	2680 m	mg/kg 1.0				
Aliphatic TPH >C35-C44	Z	2680 m	mg/kg 1.0				
Total Aliphatic Hydrocarbons	z	2680 m	mg/kg 5.0				
Aromatic TPH >C5-C7	z	2680 m	mg/kg 1.0				
Aromatic TPH >C7-C8	z	2680 m	mg/kg 1.0				
Aromatic TPH >C8-C10	W	2680 m	mg/kg 1.0		_		
Aromatic TPH >C10-C12	M	2680 m	mg/kg 1.0		_		
Aromatic TPH >C12-C16	Σ	2680 m	mg/kg 1.0	0	-		
Aromatic TPH >C16-C21	n	2680 m	mg/kg 1.0				
Aromatic TPH >C21-C35	Ø	2680 m	mg/kg 1.0		-		
Aromatic TPH >C35-C44	z	2680 m	mg/kg 1.0				
Total Aromatic Hydrocarbons	z	2680 m	mg/kg 5.0				
Total Petroleum Hydrocarbons	z	2680 m	mg/kg 10.0	0			
Benzene	M		µg/kg 1.0	-			
Toluene	M	2760 µ	µg/kg 1.0	_	-		
Ethylbenzene	M	2760 µ	µg/kg 1.0				
m & p-Xylene	Σ	2760 µ	µg/kg 1.0		-		
o-Xylene	W	2760 µ	µg/kg 1.0				
Methyl Tert-Butyl Ether	M	_	µg/kg 1.0				
Naphthalene	W		mg/kg 0.10	0			
Acenaphthylene	z		mg/kg 0.10	0			
Acenaphthene	M		mg/kg 0.10	0			
Fluorene	M		mg/kg 0.10	0			
Phenanthrene	Σ		mg/kg 0.10	0			
Benzoljfluoranthene	z	_	mg/kg 0.10	0			
Anthracene	Σ		mg/kg 0.10	0			
Fluoranthene	Σ		mg/kg 0.10	0			
Pyrene	W	2800 n	mg/kg 0.10	0			1
Benzo[a]anthracene	Σ		mg/kg 0.10	0			
Chrysene	Σ		mg/kg 0.10	0			
Benzo[b]fluoranthene	W		mg/kg 0.10	0			
Benzo[k]fluoranthene	Ø	_	mg/kg 0.10	0			
Benzo[a]pyrene	Σ			0			
Indeno(1,2,3-c,d)Pyrene	Σ	2800 n	mg/kg 0.10	0			
			1		İ		

4

Page 11 of 33

1

ł

Project: 22455 Avid Development Sandyford (Aecom / Marlet)

Client: IGSL		Cher	Chemtest Job No.:	:.oN do	20-10240	20-10240	20-10240
Quotation No.:		Chemte	Chemtest Sample ID.:	ple ID.:	996092	996093	996094
Order No.:		Clier	Client Sample Ref .:	le Ref .:	13551	13553	130581
	1	Se	Sample Location:	ocation:	BH3	BH3	BH4
			Sampl	Sample Type:	SOIL	SOIL	SOIL
		eT:	Top Depth (m):	oth (m):	1.00	3.00	1.00
		Bot	Bottom Depth (m):	oth (m):	1.00	3.00	1.00
			Asbest	Asbestos Lab:			
Determinand	Accred.	SOP	SOP Units	ГОР	「ないのない」と	の一般になるた	「「「ないない」」
Benzo[g,h,i]perylene	W	2800	2800 mg/kg	0.10			
Coronene	z	2800	2800 mg/kg	0.10		21	
Total Of 17 PAH's	z	2800	mg/kg	2.0			
PCB 28	⊃ 	2815	mg/kg 0.010	0.010			
PCB 52	⊃ 	2815	2815 mg/kg 0.010	0.010			
PCB 90+101	P	2815	2815 mg/kg 0.010	0.010			
PCB 118	D	2815	mg/kg 0.010	0.010			
PCB 153	D	2815	2815 mg/kg 0.010	0.010			
PCB 138	D	2815	2815 mg/kg 0.010	0.010			
PCB 180	D	2815	mg/kg	0.010			
Total PCBs (7 Congeners)	D	2815	2815 mg/kg	0.10			
Total Phenols	W	2920	2920 mg/kg	0.30			

,

ii X

Project: 22455 Avid Development Sandyford (Aecom / Marlet)

Results - Single Stage WAC

Chemtest Job No:	20-10240				Landfill	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996074					Limits	
Sample Ref:	131830					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP1					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W.	%	[A] 1.6	ю	5	9
Loss On Ignition	2610	M	%	5.5	1	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	9	E	ı
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	۴	1	ı
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	1	1
Total (Of 17) PAH's	2800	Z	mg/kg	< 2.0	100	1	1
рн	2010	M		8.2	1	9<	ı
Acid Neutralisation Capacity	2015	z	mol/kg	0.031	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	5 10 I/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	n	0.0093	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	n	< 0.0010	< 0.050	0.5	10	70
Copper	1450	n	0.0011	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.0033	< 0.050	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	n	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.47	4.7	10	150	500
Sulphate	1220	n	16	160	1000	20000	50000
Total Dissolved Solids	1020	Z	85	840	4000	60000	100000
Phenol Index	1920	Ŋ	< 0.030	< 0.30	1	ì	'n
Dissolved Organic Carbon	1610	n	9.5	95	500	800	1000

ų,

Dry mass of test portion/kg	
Moisture (%)	
Waste Acceptance Criteria	X

j.

0.090

Solid Information

Results - Single Stage WAC

chemistry to deliver results	
Project: 22455 Avid Development Sandyford (Aeco	ment Sandyford (Aeco
Chemtest Job No:	20-10240
Chamtast Samula ID:	996075

20-10 99607 13183 181 1.00 1.00	240 5 5 5 5 6 2 6 1 5 6 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 8 1				Landfill V	Landfill Waste Acceptance Criteria Limits Stahlo Non-	e Criteria
ID: 99607 13183 13	5 SOP 2625 2610 2815 2815 2815					Limits Stable Non-	
1318: TP1 1.00 1.00 1.00 90n	soP SOP 2625 2610 2610 2815 2815					stable Non-	
TP1 1.00 1.00 1.00 geners)	SOP S0P 2625 2610 2815 2815					Cuunic, NUL	
TP1 1.00 1.00 90n 90n 90n	SOP 2625 2610 2760 2815					reactive	
1.00 1.00 geners)	SOP 2625 2610 2760 2815					hazardous	Hazardous
1.00 and a second se	SOP 2625 2610 2760 2815				Inert Waste	waste in non-	Waste
arbon ongeners)	SOP 2625 2610 2760 2815				Landfill	hazardous	Landfill
Carbon on Congeners)	SOP 2625 2610 2760 2815					Landfill	
lers)	2625 2610 2760 2815	Accred.	Units				
iltion (7 Congeners)	2610 2760 2815	W	%	[A] 0.50	3	5	9
(7 Congeners)	2760 2815	W	%	3.7	1	1	10
	2815	W	mg/kg	[A] < 0.010	9	1	1
		W	mg/kg	< 0.10	t	ı	1
TPH Total WAC (Mineral Oil) 2	2670	W	mg/kg	[A] < 10	500	1	,
Total (Of 17) PAH's 2	2800	z	mg/kg	< 2.0	100	1	1
pH 2	2010	W		8.1	1	9<	1
Acid Neutralisation Capacity 2	2015	z	mol/kg	0.028	I.	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B;	using BS EN 12457 at L/S 10 l/kg	3 10 I/kg
Arsenic 1	1450	D	< 0.0010	< 0.050	0.5	2	25
Barium	1450	D	0.0030	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	1	5
Chromium 1	1450	n	< 0.0010	< 0.050 -	0.5	10	20
Copper 1	1450	D	< 0.0010	< 0.050	2	50	100
Mercury 1	1450	D	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	< 0.0010	< 0.050	0.5	10	30
Nickel 1	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony 1	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium 1	1450	n	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	U	< 0.0010	< 0.50	4	50	200
Chloride 1	1220	n	< 1.0	< 10	800	15000	25000
Fluoride 1	1220	n	0.19	1.9	10	150	500
Sulphate 1	1220	n	3.2	32	1000	20000	50000
Total Dissolved Solids	1020	N	62	620	4000	60000	100000
Phenol Index 1	1920	n	< 0.030	< 0.30	1	ï	
Dissolved Organic Carbon	1610	n	5.9	59	500	800	1000

Dry mass of test portion/kg	0.090
Aoisture (%)	16

Waste Acceptance Criteria

Project: 22455 Avid Development Sandyford (Aecom / Marlet) Chamboet Job No.

Chemtest Job No:	20-10240				Landfill	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996076					Limits	
Sample Ref:	131834					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP2					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] 0.52	3	5	9
Loss On Ignition	2610	W	%	3.1	-	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	6	3	
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	1		1
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	1	I
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100	1	1
Н	2010	W		8.5	1	9<	1
Acid Neutralisation Capacity	2015	z	mol/kg	0.12	I	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	S 10 l/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	D	0.0065	< 0.50	20	100	300
Cadmium	1450	D	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	n	< 0.0010	< 0.050	0.5	10	70
Copper	1450	n	0.0014	< 0.050	2	50	100
Mercury	1450	E U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.0076	0.076	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	D	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.27	2.7	10	150	500
Sulphate	1220	n	2.3	23	1000	20000	50000
Total Dissolved Solids	1020	Z	65	650	4000	60000	100000
Phenol Index	1920	D	< 0.030	< 0.30	۲	ŗ	
Dissolved Organic Carbon	1610	n	19	190	500	800	1000

Solid Information	
Dry mass of test portion/kg	060.0
Moisture (%)	12

! +

Waste Acceptance Criteria

Results - Single Stage WAC

ment Sandyford (Aecon	evelopment Sandyford (id Development Sandy	id Development Sandyford (
ment Sandyford	evelopment Sandy	id Development Sandy	id Development Sandy
ment Sandy	Jevelopment Sandy	P	Ц
ment	Development	P	Ц
	Develop	D D	Project: 22455 Avid Develop

Chemtest Job No:	20-10240				Landfill V	LandfIll Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	20077				18 - 18 18	Limits	
Sample Ref:	131838					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP3					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				· Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] 0.98	3	5	9
Loss On Ignition	2610	W	%	4.4	(111) (111)	(111)	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	1	1	1
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	1	ı
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100	1	1
рН	2010	W		8.3	1	>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.083	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	3 10 l/kg
Arsenic	1450	n	0.0015	< 0.050	0.5	2	25
Barium	1450	N	0.023	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04		5
Chromium	1450	N	< 0.0010	< 0.050	0.5	10	70
Copper	1450	n	0.0031	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.0047	< 0.050	0.5	10	30
Nickel	1450	n	0.0018	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	0.0015	0.015	0.06	0.7	5
Selenium	1450	n	0.0011	0.011	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.27	2.7	10	150	500
Sulphate	1220	n	5.7	57	1000	20000	50000
Total Dissolved Solids	1020	z	100	1000	4000	60000	100000
Phenol Index	1920	n	< 0.030	< 0.30	-	ĩ	ĩ
Dissolved Organic Carbon	1610	n	14	140	500	800	1000

1

Iny mass of test portion/kg
Aoisture (%)
8

1

Waste Acceptance Criteria

i

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste may be hazardous or non-hazardous.

l

id Development Sand
Chemtest Job No: 20-10240

Chemtest Job No:	20-10240				Landfill V	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996078					Limits	
Sample Ref:	131839					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP3					hazardous	Hazardous
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.00				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] 0.35	3	5	9
Loss On Ignition	2610	W	%	2.3	ï	(111)	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	9	1000	1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	1	ſ	I
TPH Total WAC (Mineral Oil)	2670	M	mg/kg	[A] < 10	500	1	1
Total (Of 17) PAH's	2800	z	mg/kg	< 2.0	100		1
рН	2010	W		8.5	1	>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.18	Ē	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B:	using BS EN 12457 at L/S 10 l/kg	s 10 l/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	n	0.0015	< 0.50	20	100	300
Cadmium	1450	D	< 0.00010	< 0.010	0.04	•	5
Chromium	1450	n	< 0.0010	< 0.050	0.5	10	70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	D	0.0052	0.052	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	n	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.23	2.3	10	150	500
Sulphate	1220	n	2.2	22	1000	20000	50000
Total Dissolved Solids	1020	z	54	540	4000	60000	100000
Phenol Index	1920	D	< 0.030	< 0.30	٢	ĩ	
Dissolved Organic Carbon	1610	D	8.0	80	500	800	1000

ł

į

Solid Information	
Dry mass of test portion/kg	060.0
Moisture (%)	8.6

Waste Acceptance Criteria

Project: 22455 Avid Development Sandyford (Aecom / Marlet)

Results - Single Stage WAC

Chemtest Job No:	20-10240		Đ		Landfill V	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996079					Limits	
Sample Ref:	131842					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP4					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	[A] 0.35	3	5	9
Loss On Ignition	2610	M	%	2.3	1991		10
Total BTEX	2760	M	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	1	ı	ł
TPH Total WAC (Mineral Oil)	2670	M	mg/kg	[A] < 10	500	1	1
Total (Of 17) PAH's	2800	Z	mg/kg	< 2.0	100	1	
Н	2010	M		8.4	1	9<	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.18		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B:	using BS EN 12457 at L/S 10 l/kg	3 10 I/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	U	0.0020	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70
Copper	1450	U	< 0:0010	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.0074	0.074	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	N	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	U	< 0.0010	< 0.50	4	50	200
Chloride	1220	U	1.1	11	800	15000	25000
Fluoride	1220	U	0.24	2.4	10	150	500
Sulphate	1220	U	7.1	71	1000	20000	50000
Total Dissolved Solids	1020	z	57	570	4000	60000	100000
Phenol Index	1920	D	< 0.030	< 0.30	-		1
Dissolved Organic Carbon	1610	n	5.6	56	500	800	1000

Waste Acceptance Criteria

Dry mass of test portion/kg Moisture (%)

Solid Information

0.090

Results - Single Stage WAC

t: 22455 Avid Development Sandyford (Aecom / Marlet)	<u>vid</u>
--	------------

Chemtest Job No:	20-10240				Landfill V	LandfIII Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	080966					Limits	
Sample Ref:	131846					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP5					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units		ı		
Total Organic Carbon	2625	W	%	[A] 0.31	3	5	9
Loss On Ignition	2610	W	%	1.7	1	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	9	-	
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	34	I	1
TPH Total WAC (Mineral Oil)	2670	M	mg/kg	[A] < 10	500	1	1
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100	1	1
PH	2010	M		10.5		>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.18	•	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B:	using BS EN 12457 at L/S 10 l/kg	5 10 l/kg
Arsenic	1450	n	0.0011	< 0.050	0.5	2	25
Barium	1450	n	0.023	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	£	5
Chromium	1450	n	0.0041	< 0.050	0.5	10	70
Copper	1450	U	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	0.00069	0.0069	0.01	0.2	2
Molybdenum	1450	U	0.0034	< 0.050	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	n	0.0010	0.010	0.1	0.5	7
Zinc	1450	D	0.011	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.14	1.4	10	150	500
Sulphate	1220	n	310	3100	1000	20000	50000
Total Dissolved Solids	1020	N	400	4000	4000	60000	100000
Phenol Index	1920	D	< 0.030	< 0.30	-	î	ı
Dissolved Organic Carbon	1610	D	3.7	< 50	500	800	1000

	rtion/kg 0.090	5.9	
Solid Information	iry mass of test portion/kg	loisture (%)	

1

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste may be hazardous or non-hazardous.

Results - Single Stage WAC

roject: 22455 Avid Development Sandyford (Aecom / Mariet)	(Aecon	/ford	Sand	nent :	elopr	Dev	Avid	22455	
--	---------	-------	------	--------	-------	-----	------	-------	--

Chemtest Job No:	20-10240				Landfill V	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996081					Limits	
Sample Ref:	131847					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP5					hazardous	Hazardous
Top Depth(m):	1.20				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.20				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] 0.61	3	5	9
Loss On Ignition	2610	W	%	3.3	1	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	1	E	I
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	I	1
Total (Of 17) PAH's	2800	z	mg/kg	< 2.0	100	1	1
рН	2010	W		8.0	1	>6	1
Acid Neutralisation Capacity	2015	z	mol/kg	0.037	1	To evaluate	To evaluate
Eluate Analysis	Ŧ		10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
	2		mg/l	mg/kg	using B:	using BS EN 12457 at L/S 10 l/kg	s 10 l/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	n	0.0061	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	D	0.0010	< 0.050	0.5	10	70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.0041	< 0.050	0.5	10	30
Nickel	1450	D	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	D	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	Þ	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	D	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	D	0.26	2.6	10	150	500
Sulphate	1220	D	16	160	1000	20000	50000
Total Dissolved Solids	1020	z	85	840	4000	60000	100000
Phenol Index	1920	D	< 0.030	< 0.30	-		â
Dissolved Organic Carbon	1610	D	6.3	63	500	800	1000

Ę

ł

Solid Information	
Dry mass of test portion/kg	060.0
Moisture (%)	17

1

Waste Acceptance Criteria

Chemtest Job No:	20-10240	
Chemtest Sample ID:	996082	
Sample Ref:	131850	
Sample ID:		
Sample Location:	TP6	
Top Depth(m):	0.50	Iner
Bottom Depth(m):	0.50	
Sampling Date:		

Chemtest Job No:	20-10240				Landfill V	LandfIII Waste Acceptance Criteria	e Criteria
Cnemtest sample ID:	330002					LIMITS	
Sample Ref:	131850					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP6					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] < 0.20	3	5	9
Loss On Ignition	2610	W	%	2.0		1	10
Total BTEX	2760	M	mg/kg	[A] < 0.010	6	1	
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	1	1	1
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	I	Î
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100	1	ï
На	2010	W		10.8	1	>6	3
Acid Neutralisation Capacity	2015	z	mol/kg	0.18	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B:	using BS EN 12457 at L/S 10 l/kg	6 10 l/kg
Arsenic	1450	n	0.0029	< 0.050	0.5	2	25
Barium	1450	n	0.0040	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	U	0.0040	< 0.050	0.5	10	70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.0031	< 0.050	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	n	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.19	1.9	10	150	500
Sulphate	1220	n	23	230	1000	20000	50000
Total Dissolved Solids	1020	z	100	1000	4000	60000	100000
Phenol Index	1920	n	< 0.030	< 0.30	1		ŝ.
Dissolved Organic Carbon	1610	D	4.9	< 50	500	800	1000

•

Dry mass of test portion/kg	060.0
Moisture (%)	7.3

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste may be hazardous or non-hazardous.

ment Sandyford (Aecom / Marie	evelopment Sandyford (Aecom / Marie	Avid Development Sandyford (Aecom / Marle	t: 22455 Avid Development Sandyford (Aecom / Marle
ment Sandyford (Aecom	evelopment Sandyford (Aecom	Avid Development Sandyford (Aecom	22455 Avid Development Sandyford (Aecom
ment Sandyford (evelopment Sandyford (Avid Development Sandyford (22455 Avid Development Sandyford (
ment Sandy	evelopment Sandy	Avid Development Sandy	22455 Avid Development Sandy
ment	evelopment	Avid Development	22455 Avid Development
	evelop	Avid Develop	22455 Avid Develop

Chemtest Job No:	20-10240				- Landfill V	LandfIll Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996083					Limits	
Sample Ref:	136807					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP7					hazardous	Hazardous
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.00				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] 0.28	3	5	9
Loss On Ignition	2610	W	%	2.5	1	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	l l	ı	1
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	1	1
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100	1	3
Н	2010	W		8.6	1	9<	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.19	I	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			l/gm	mg/kg	using B(using BS EN 12457 at L/S 10 l/kg	10 I/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	n	0.0072	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	1	5
Chromium	1450 -	n	< 0.0010	< 0.050	0.5	10	- 70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.014	0.14	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	N	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.29	2.9	10	150	500
Sulphate	1220	n	2.0	20	1000	20000	50000
Total Dissolved Solids	1020	Z	65	650	4000	60000	100000
Phenol Index	1920	n	< 0.030	< 0.30	1		r
Dissolved Organic Carbon	1610	n	4.8	< 50	500	800	1000

:	
Solid Information	
Dry mass of test portion/kg	060:0
Moisture (%)	11

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste may be hazardous or non-hazardous.

Project: 22455 Avid Development Sandyford (Aecom / Marlet)	ndyford (Aecom / M	larlet)			Е		
Chemtest Job No: Chemtest Sample ID:	20-10240 996084				Landfill V	LandfIII Waste Acceptance Criteria	e Criteria
citetitest satitple in.	100000						
Sample Ref:	136811					Stable, Non-	
sample IU:						reactive	
Sample Location:	TP8				A CONTRACTOR	hazardous	Hazardous
Top Depth(m):	1.00		14		Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.00				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] 0.35	3	5	9
Loss On Ignition	2610	Σ	%	2.2	1	1	10
Total BTEX	2760	×	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	-	1	ı
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	1	1
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100	1	ï
рН	2010	Σ		8.6	1 martin	>6	1
Acid Neutralisation Capacity	2015	z	mol/kg	0.17	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B:	using BS EN 12457 at L/S 10 l/kg	S 10 l/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	n	0.0014	< 0.50	20	100	300
Cadmium	1450	D	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	n -	< 0.0010	< 0.050	0.5	10	70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.0089	0.089	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	n	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.19	1.9	10	150	500
Sulphate	1220	n	1.4	14	1000	20000	50000
Total Dissolved Solids	1020	z	49	490	4000	60000	100000
Phenol Index	1920	n	< 0.030	< 0.30	-		
			1	1			

i

4

-		
-		
-		
1	3	

0.090 9.1

Dry mass of test portion/kg

Moisture (%)

Solid Information

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

1000

800

504

5

5.7

1610

Dissolved Organic Carbon

3

Project: 22455 Avid Development Sandyford (Aecom / Marlet)

Results - Single Stage WAC

Chemtest Job No:	20-10240				Landfill	LandfIII Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996085					Limits	
Sample Ref:	136814					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP9					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units			91	
Total Organic Carbon	2625	W	%	[A] 0.56	3	5	9
Loss On Ignition	2610	W	%	2.3	,	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	6	1	1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	1	ı	ı
TPH Total WAC (Mineral Oil)	2670	M	mg/kg	[A] < 10	500	1	1
Total (Of 17) PAH's	2800	N	mg/kg	8.7	100	1	I
РН	2010	W		9.9	-	>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	- 0.18	I	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B.	using BS EN 12457 at L/S 10 l/kg	6 10 I/kg
Arsenic	1450	n	0.0017	< 0.050	0.5	2	25
Barium	1450	n	0.0043	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	n	0.0018	< 0.050	0.5	10	70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	N	0.015	0.15	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	U U	0.0011	0.011	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.23	2.3	10	150	500
Sulphate	1220	n	42	420	1000	20000	50000
Total Dissolved Solids	1020	N	120	1200	4000	60000	100000
Phenol Index	1920	D	< 0.030	< 0.30	-		1
Dissolved Organic Carbon	1610	n	3.9	< 50	500	800	1000

ł

Waste Acceptance Criteria

0.090 8.5

Solid Information Dry mass of test portion/kg

Moisture (%)

ct: 22455 Avid De

Chemtest Job No:	20-10240				Landfill V	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996086					Limits	
Sample Ref:	136819					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP10					hazardous	Hazardous
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.00				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	[A] 0.38	3	5	9
Loss On Ignition	2610	W	%	2.4	-	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	6		1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	1	ſ	ı
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	ī	
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100	1	
рН	2010	W		8.7	(201)	>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.13	I	To evaluate	To evaluate
Eluate Analysis		2	10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	3 10 I/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	n	0.0019	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	•	5
Chromium	. 1450	n	< 0.0010	< 0.050	0.5	10	70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.0071	0.071	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	N	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	n	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	N	< 0.0010	< 0.50	4	50	200
Chloride	1220	N	< 1.0	< 10	800	15000	25000
Fluoride	1220	N	0.19	1.9	10	150	500
Sulphate	1220	N	2.1	21	1000	20000	50000
Total Dissolved Solids	1020	N	53	-530	4000	- 60000	100000
Phenol Index	1920	D	< 0.030	< 0.30	-		
Dissolved Organic Carbon	1610	n		52	500	800	1000

Dry mass of test portion/kg	060.0
oisture (%)	10

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

1

Project: 22455 Avid Development Sandyford (Aecom / Marlet)

į

Chemtest Job No:	20-10240				Landfill	Landfill Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996087					Limits	
Sample Ref:	138822					Stable, Non-	
Sample ID:	10		8)			reactive	
cation:	TP11					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] 0.31	3	5	9
Loss On Ignition	2610	W	%	2.3	1	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	1	E	ı
TPH Total WAC (Mineral Oil)	2670	M	mg/kg	[A] < 10	500	L	ï
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100	1	ï
рН	2010	W		8.7	1	9<	ı
Acid Neutralisation Capacity	2015	N	mol/kg	0.14	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B.	using BS EN 12457 at L/S 10 l/kg	S 10 l/kg
Arsenic	1450	n	0.0013	< 0.050	0.5	2	25
Barium _	1450	n	0.0020	< 0.50	20	100	300
Cadmium	1450	N	< 0.00010	< 0.010	0.04	*	5
Chromium	1450	D	< 0.0010	< 0.050	0.5	10	70
Copper	1450	- N	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	0.00052	0.0052	0.01	0.2	2
Molybdenum	1450	n	0.0072	0.072	0.5	10	30
Nickel	1450	D	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	0.0021	0.021	0.06	0.7	5
Selenium	1450	N	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.19	1.9	10	150	500
Sulphate	1220	n	8.3	83	1000	20000	50000
Total Dissolved Solids	1020	z	49	490	4000	60000	100000
Phenol Index	1920	N	< 0.030	< 0.30	-	ĩ	t
Dissolved Organic Carbon	1610	D	7.7	11	500	800	1000

1

١

I

Solid Information	
ry mass of test portion/kg	060.0
oisture (%)	9.1

ł

Waste Acceptance Criteria

l.

relonment Sandvf	Development S
>	Avic

Chemtest Job No: Chemtest Sample ID:	20-10240 996088				Landfill	Landfill waste Acceptance Criteria Limits	e criteria
Sample Ref:	136827					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP12					hazardous	Hazardous
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.00				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	W	%	[A] 0.34	3	5	9
Loss On Ignition	2610	W	%	2.4	1	1	10
Total BTEX	2760	M	mg/kg	[A] < 0.010	6	1	3
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	1	100 L	L
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	I	I
Total (Of 17) PAH's	2800	Z	mg/kg	< 2.0	100	1	1
PH	2010	W		8.6		>6	1
Acid Neutralisation Capacity	2015	z	mol/kg	0.15	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	S 10 I/kg
Arsenic	1450	N	< 0.0010	< 0.050	0.5	2	25
Barium	1450	n	0.0026	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	n	< 0.0010	< 0.050	0.5	10	70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	0.00050	0.0050	0.01	0.2	2
Molybdenum	1450	n	0.014	0.14	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	n	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.24	2.4	10	150	500
Sulphate	1220	n	1.8	18	1000	20000	50000
Total Dissolved Solids	1020	Z	54	540	4000	60000	100000
Phenol Index	1920	n	< 0.030	< 0.30	1	Ĩ	1
Dissolved Organic Carbon	1610	n	7.3	73	500	800	1000

1

Solid Information	
Dry mass of test portion/kg	060'0
Moisture (%)	10

Waste Acceptance Criteria

ţ

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste may be hazardous or non-hazardous.

j.

t: 22455 Avid Development Sandyford

Chemtest Job No:	20-10240				Landfill V	Landflll Waste Acceptance Criteria	e Criteria
Chemtest Sample ID:	996089				Ĩ	Limits	
Sample Ref:	13559					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH1					hazardous	Hazardous
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.00				Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	[A] 0.34	3	с,	9
Loss On Ignition	2610	W_	%	2.3	1	1	10
Total BTEX	2760	W	mg/kg	[A] < 0.010	9	1	1
Total PCBs (7 Congeners)	2815	W	mg/kg	< 0.10	+	I	1
TPH Total WAC (Mineral Oil)	2670	W	mg/kg	[A] < 10	500	1	1
Total (Of 17) PAH's	2800	z	mg/kg	< 2.0	100	1	3
рН	2010	W		8.5	1	9<	1
Acid Neutralisation Capacity	2015	z	mol/kg	0.17	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	eaching test
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg	5 10 l/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	N	0.0031	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	Ŧ	ۍ
Chromium	1450	n	< 0.0010	< 0.050	0.5	10	70
Copper	1450	n	< 0.0010	< 0.050	2	50	100
Mercury	1450	n	0.00062	0.0062	0.01	0.2	2
Molybdenum	1450	n	0.012	0.12	0.5	10	30
Nickel	1450	n	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	n	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	D	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	n	< 0.0010	< 0.50	4	- 50	200
Chloride	1220	n	< 1.0	< 10	800	15000	25000
Fluoride	1220	n	0.26	2.6	10	150	500
Sulphate	1220	n	2.1	21	1000	20000	50000
Total Dissolved Solids	1020	z	52	520	4000	60000	100000
Phenol Index	1920	n	< 0.030	< 0.30	•	1	
Dissolved Organic Carbon	1610	n	5.3	53	500	800	1000

Dry mass of test portion/kg	0.090
MOISTURE (%)	2

Waste Acceptance Criteria

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

	Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
	996074	131830		TP1		A	Amber Glass 250ml
	996074	131830		TP1		А	Plastic Tub 500g
ł	996075	131831		TP1		А	Amber Glass 250ml
Ĩ	996075	131831		TP1		А	Plastic Tub 500g
	996076	131834		TP2		А	Amber Glass 250ml
	996076	131834		TP2		А	Plastic Tub 500g
	996077	131838		TP3	ų.	А	Amber Glass 250ml
	996077	131838		TP3		A	Plastic Tub 500g
	996078	131839		TP3		A	Amber Glass 250ml
	996078	131839		TP3		Α	Plastic Tub 500g
	996079	131842		TP4		А	Amber Glass 250ml
	996079	131842		TP4		A	Plastic Tub 500g
	996080	131846		TP5		A	Amber Glass 250ml
	996080	131846		TP5		A	Plastic Tub 500g
	996081	131847		TP5		A	Amber Glass 250ml
	996081	131847		TP5		A	Plastic Tub 500g
	996082	131850		TP6		A	Amber Glass 250ml
	996082	131850		TP6		A	Plastic Tub 500g
ſ	996083	136807		TP7		А	Amber Glass 250ml
	996083	136807		TP7		A	Plastic Tub 500g
	996084	136811		TP8		A	Amber Glass 250ml
ſ	996084	136811		TP8		А	Plastic Tub 500g

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
996085	136814		TP9		А	Amber Glass 250ml
996085	136814		TP9		A	Plastic Tub 500g
996086	136819		TP10		А	Amber Glass 250ml
996086	136819		TP10		А	Plastic Tub 500g
996087	138822		TP11		А	Amber Glass 250mi
996087	138822		TP11	5	А	Plastic Tub 500g
996088	136827		TP12		А	Amber Glass 250ml
996088	136827		TP12		А	Plastic Tub 500g
996089	13559		BH1		А	Amber Glass 250ml
996089	13559		BH1		А	Plastic Tub 500g
996090	135560		BH1		A	Amber Glass 250ml
996090	135560		BH1		А	Plastic Tub 500g
996091	1		BH2		А	Amber Glass 250ml
996091	1		BH2		А	Plastic Tub 500g
996092	13551		BH3		А	Amber Glass 250ml
996092	13551		внз		А	Plastic Tub 500g
996093	13553		BH3		А	Amber Glass 250ml
996093	13553	1	BH3		A	Plastic Tub 500g
996094	130581		BH4		A	Amber Glass 250ml
996094	130581		BH4	*	А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary	
1010	pH Value of Waters	pН	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	рН	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

1

ŝ

1

ł

ñ.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- Εį

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u> Appendix VI Test Data

c. Water Levels and Gas Concentrations

	:				• •	,	
			Gas & Gro	oundwater	Gas & Groundwater Monitoring		
Site Location	Site Location Carmanhall road,	l, Sandyford.					
Project No. 22455	22455						/IGST/
Client	Client Marlet						
Date	Date 20th March 2020						
	BH3	RC2	BH1	RC4	-		
ч							
WATER LEVEL (m bgl)	2.5	2.9	2.2	2.4			÷
GAS FLOW	n/a	п/а	n/a	n/a			
CH4(%)	0.0	0.0	0.0	0.0			
LEL(%)	0.0	0.0	0.0	0.0			
CO2(%)	0.1	0.0	0.2	0.0			
02(%)	20.7	19.9	19.6	20.6			
BAROMETRIC PRESURE (mb)	1014	1014	1014	1014			
WEATHER	Sunny	Sunny	Sunny	Sunny			
COMMENTS							

.

i

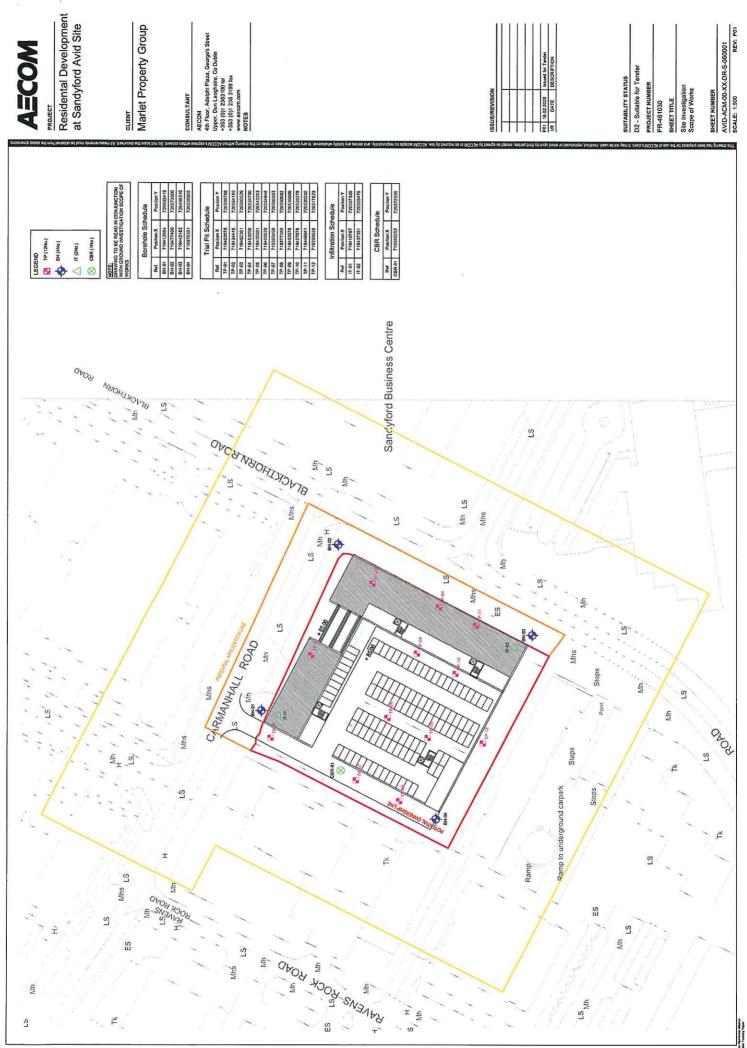
i

4

·		i				
			Gas & Gro	oundwater	Gas & Groundwater Monitoring	
Site Location	Site Location Carmanhall road,	l, Sandyford.				
Project No. 22455	22455					
Client	Client Marlet					
Date	Date 15th May 2020					
	BH3	RC2	1H8	RC4		
WATER LEVEL (m bgl)	2.2	2.6	1.9	2.05		
GAS FLOW	n/a	∩/a	n/a	n/a		
CH4(%)	0.0	0.0	0.0	0.0		
LEL (%)	0.0	0.0	0.0	0.0		
CO2(%)	0.1	0.0	0.1	0.0		
02(%)	20.5	19.7	19.9	20.1		
BAROMETRIC PRESURE (mb)	1006	1006	1006	1006		
WEATHER	Sunny	Sunny	Sunny	Sunny		
	-					
COMMENTS						

•

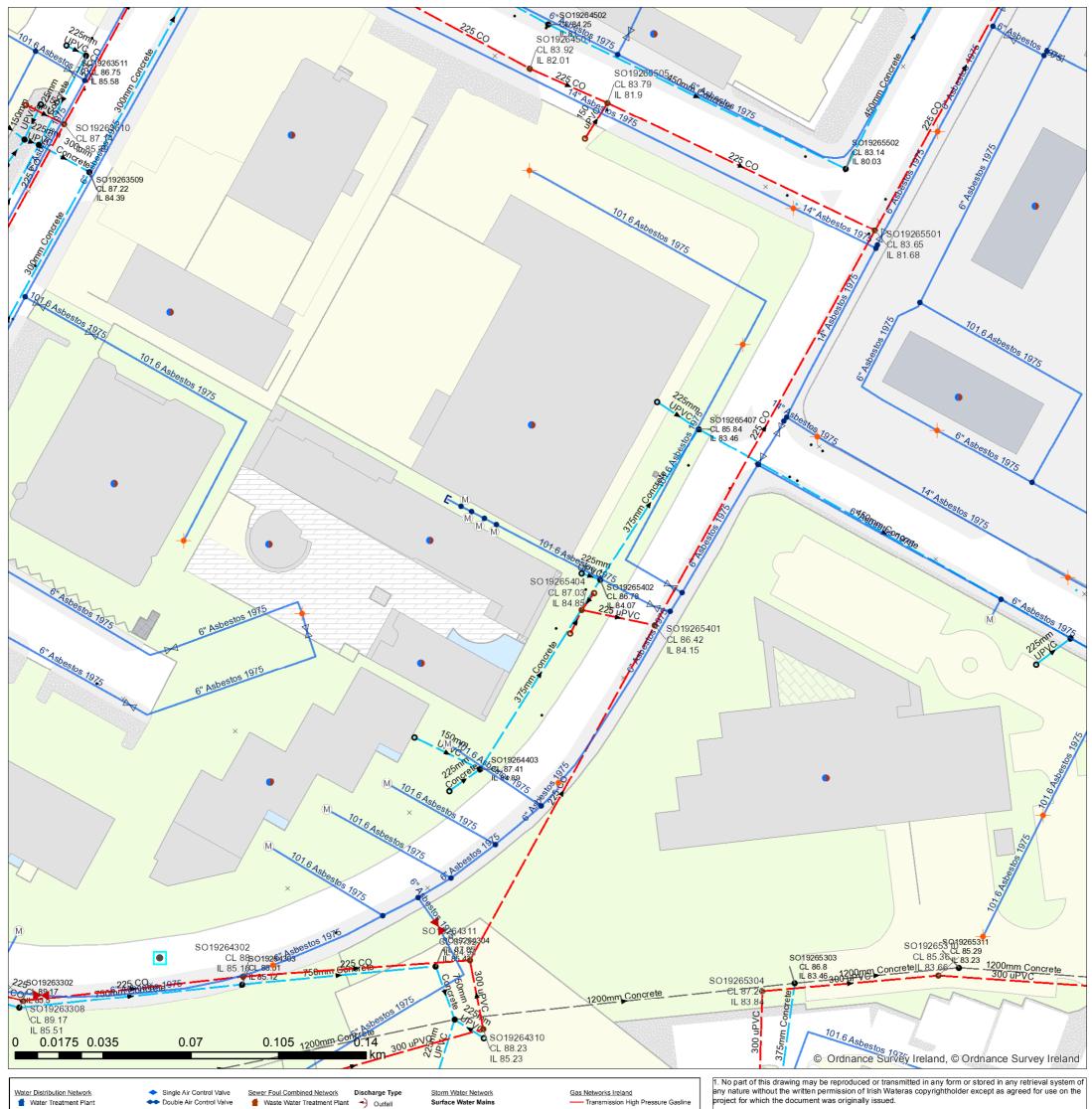
!


			Gas & Gro	oundwater	Gas & Groundwater Monitoring	
Site Location	Site Location Carmanhall road,	l, Sandyford.				
Project No. 22455	22455					
Client	Client Marlet					
Date	16-Jun-20					
	BH3	RC2	BH1	RC4		
WATER LEVEL (m bgl)	2.1	2.5	1.63	1.83		
GAS FLOW	0.01/hr	01/hr	0l/hr	0l/hr		
CH4(%)	0.0	0.0	0.0	0.0		
LEL(%)	0.0	0.0	0.0	0.0		
CO2(%)	0.0	0.0	0.1	0.0		
02(%)	20.7	19.9	20.4	20.6		
BAROMETRIC PRESURE (mb)	1001	1001	1001	1001		
WEATHER	Raining	Raining	Raining	Raining		
COMMENTS						
				-		

1

ź

¢


Appendix VII Site Plan

EU AECONNET COMEMINIMEDER ZUDESPREAGED AND SANDYFORD MARLET 200 CAD GISSOOL SEOL WP 22 SHEETSAND ACM 40 XX OR 5 000001

Appendix B – DLRCC Existing Records

BLACKTHORN ROAD

- Water Pump Station → Storage Cell/Tower
- Dosing Point
 Meter Station
- Abstraction Point
- Telemetry Kiosk
- Reservoir
- Potable
- Raw Water
- Water Distribution Mains
- Irish Water - Private
- Trunk Water Mains
- Irish Water
- Private
- Water Lateral Lines
- Irish Wate
- Non IW
- Water Casings
- --- Water Abandoned Lines
- M Boundary Meter
- Bulk/Check Meter
- M Group Scheme
- M Source Meter
- M Waste Meter
- (i) Unknown Meter ; Other Meter
- Mon-Return
- 📂 PRV
- 🎮 PSV
- Sluice Line Valve Open/Closed
- Butterfly Line Valve Open/Closed
- Sluice Boundary Valve Open/Closed
- Rutterfly Boundary Valve Open/Closed
- ★ Scour Valves

Waste Water Pump station Water Service Connections
 Water Distribution Chambers
 Water Network Junctions
 Sewer Mains Irish Water
 Gravity - Combined
 Gravity - Foul Water Network Junctions ---- Gravity - Unknown Pressure Monitoring Point Pumping - Combined 🔶 Fire Hydrant Pumping - Foul Pumping - Unknown ● FH Fire Hydrant/Washout Syphon - Combined Water Fittings Syphon - Foul - Overflow Sewer Mains Private Other Fittings - Gravity - Foul ----- Gravity - Unknown Pumping - Combined

🗆 Cap

🗯 Тар

Reducer

- Pumping Foul Pumping - Unknown

- O Backdrop

- [보] Hatchbox
- 🕌 Lamphole
- ▲ Hydrobrake
- Other; Unknown

- Gravity Combined
- Syphon Combined
- Syphon Foul
- Overflow

- Cascade
- Catchpit

- Sewer Fittings

- ----- Sewer Casings
- Sewer Manholes
- Standard

- Bifurcation

- Flushing Structure
 Flushing Structure
 Storm Manholes
 Storm Manholes Standard Sewer Inlets O Backdrop Catchpit m Cascade Gully
 Standard Catchpit Bifurcation ^o[™]⊌^E^R Other: Unknown [부] Hatchbox Lamphole Vent/Col Hydrobrake OTHER Other; Unknown

Overflow

🍟 Soakaway

Cleanout Type

^o[™]^{₿ ■} R Other; Unknown

Rodding Eye

- Other; Unknown --- Storm Culverts Storm Clean Outs
 - Stormwater Chambers Discharge Type
 - Outfall

Inlet Type

Gully

Standard

Other: Unknown

- PG Overflow
- Soakaway
- ° ™ ⊌ □ R Other; Unknown

- Surface Gravity Mains Private
 Surface Water Pressurised Mains ----- Distribution Low Pressure Gasline Sundard Outlet
 Surface Water Pressurised Mains
 Surface Water Pressurised Mains Private
 Surface Water Pressurised Mains Private
 Sufface Water Pressurised Mains HV Underground

 - ESB MVI V Lines

----- Abandoned

Proposed

--- Water Pipe

· Sewer

Water Structure

Waste Structure

- MV Overhead Three Phase --- MV Overhead Single Phase 2. Whilst every care has been taken in its compilation, Irish Water gives this information as to the

Service connection pipes are not generally shown but their presence should be anticipated

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government.

oss of profits, arising out of or in connection with the use of the information

accordance with the current edition of the Health & Safety Authority publication,

Copyright Irish Wate

License No. 3-3-34

UISCE

ÉIREANN : IRISH

WATER

position of its underground network as a general guide only on the strict understanding that it is based on

the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations

or any other worksbeing carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out.

Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information

contained in this document concerning location and technical designation of the gas distribution and ransmission network ("the Information"). Any representations and warranties express or implied, are

excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage

ncluding, without limitation, direct, indirect, special, incidental, punitive or consequential loss including

(including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position

of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested

from GNI re gas. All work in the vicinity of gas distribution and transmission network must be completed in

Print Date: 21/02/2020

Printed by: Irish Water

Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie.

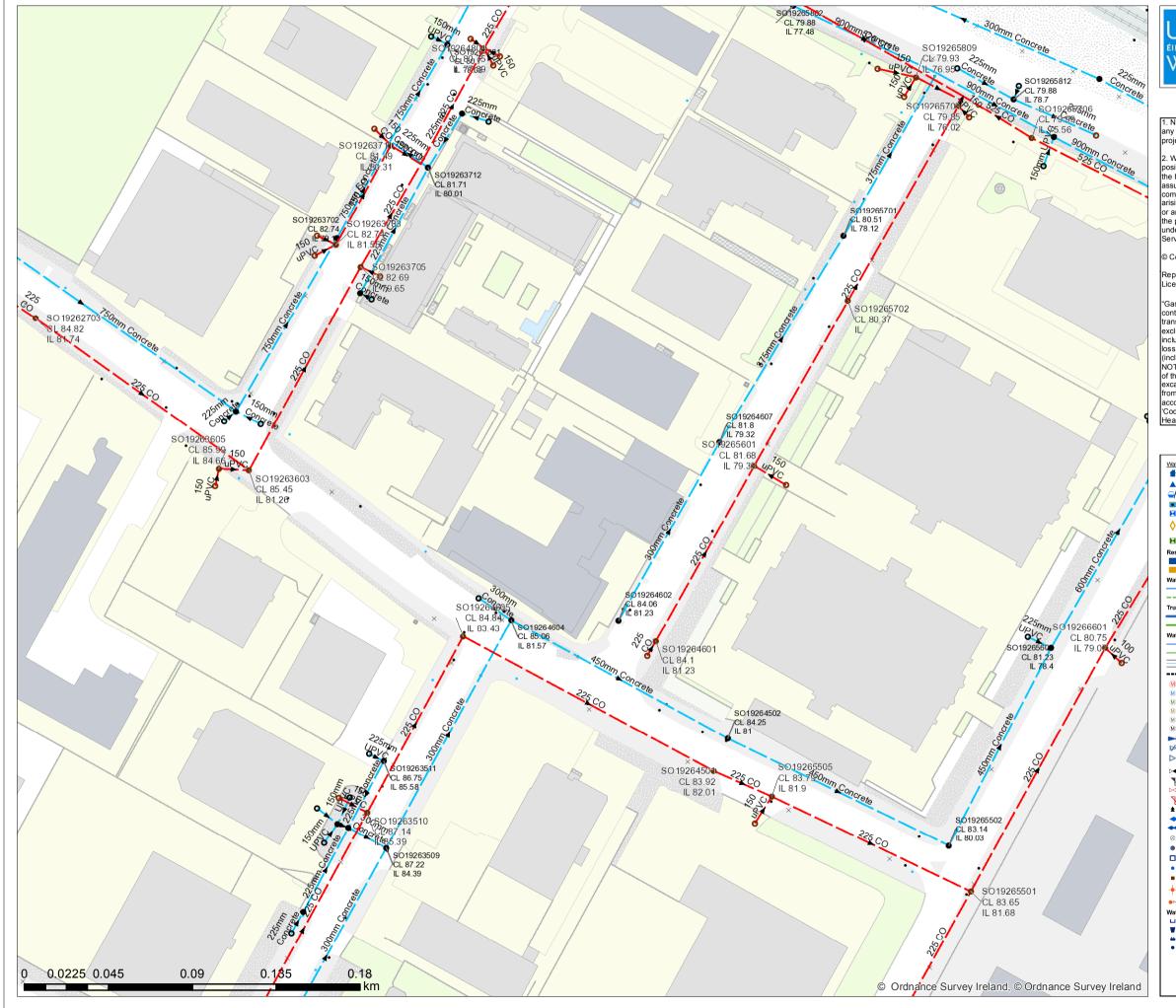
- LV Overhead Three Phase
 LV Overhead Single Phase

Non Service Categories

Under Construction

Out of Service

Decommissioned


Water Non Service Assets

Water Point Feature

Waste Non Service Assets

X Waste Point Feature

- carmanhall road - burton hall road -

Print Date: 06/05/2020

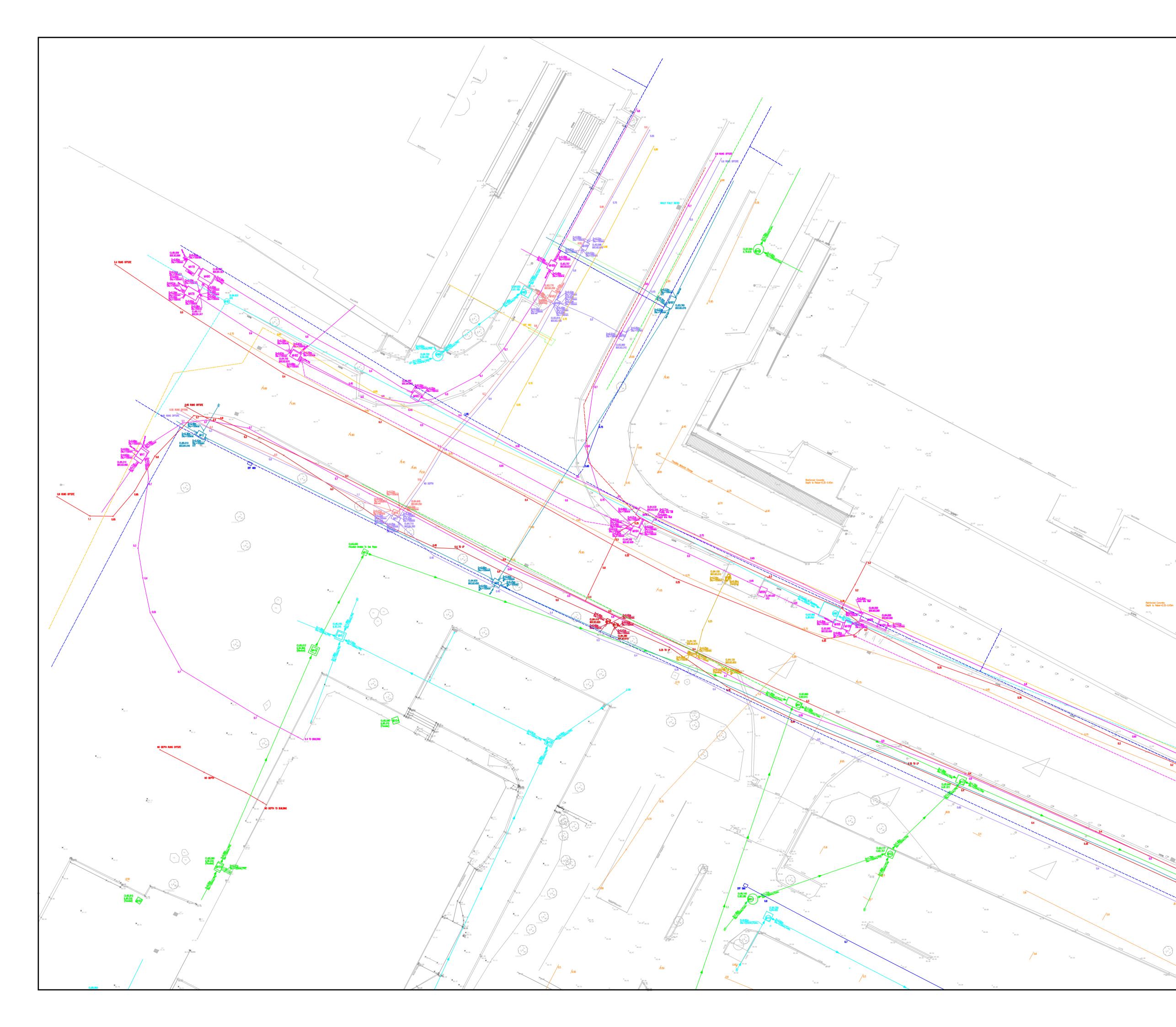
Printed by:Irish Water

1. No part of this drawing may be reproduced or transmitted in any form or stored in any retrieval system o any nature without the written permission of Irish Wateras copyrightholder except as agreed for use on the pject for which the document was originally issued.

2. Whilst every care has been taken in its compilation, Irish Water gives this information as to the osition of its underground network as a general guide only on the strict understanding that it is based on e best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other worksbeing carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. ervice connection pipes are not generally shown but their presence should be anticipated.

© Copyright Irish Water

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. License No. 3-3-34


"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, special, incidental, punitive or consequential loss including

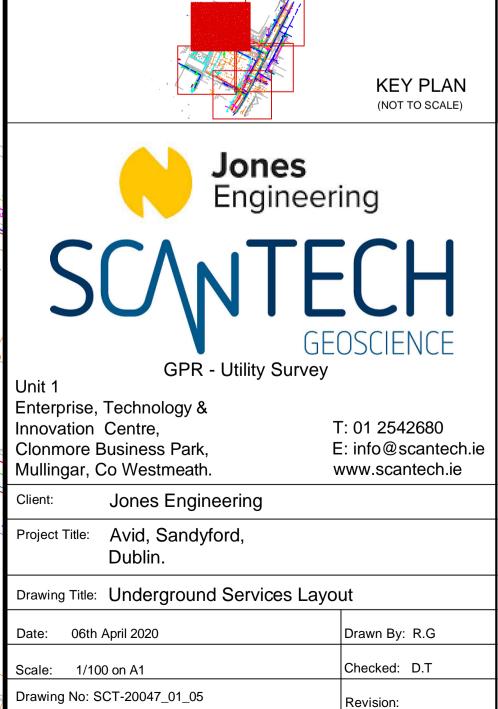
Including, windout initiation, one of, indirect, special, includental, punitive of consequential ioss including loss of profils, arising out of or in connection with the use of the information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie

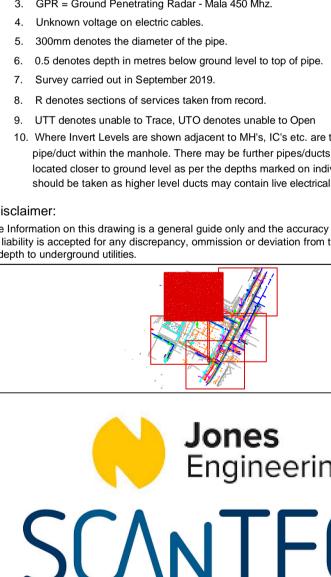
ter Distribution Network	Sewer Foul Combined Network	Storm Water Network
Water Treatment Plant	Waste Water Treatment Plant	Surface Water Mains
Water Pump Station	Waste Water Pump station	Surface Gravity Mains
T Storage Cell/Tower	Sewer Mains Irish Water	Surface Gravity Mains Private Surface Water Pressuries Mains
Dosing Point	 Gravity - Combined 	Surface Water Pressurised Mains Surface Water Pressurised Mains Private
Meter Station	Gravity - Foul	
Alternative Brief	Gravity - Unknown	Inlet Type
Abstraction Point	Pumping - Combined	Gully
Telemetry Kiosk	Pumping - Foul	Standard Other: Unknown
servoir	Pumping - Unknown	
Potable	Syphon - Combined	Storm Manholes
Raw Water	Syphon - Foul	Standard
ter Distribution Mains	Overflow	Backdrop
- Irish Water	Sewer Mains Private	Cascade
Private	Gravity - Combined	CP Catchpit
	Gravity - Foul	Bifurcation
Ink Water Mains	Gravity - Unknown	[¹] Hatchbox
Irish Water	Pumping - Combined	Lamphole
Private	Pumping - Foul	Hydrobrake
ter Lateral Lines	Pumping - Unknown	 Other; Unknown
- Irish Water	Syphon - Combined	Storm Culverts
– Non IW	Syphon - Foul	Storm Clean Outs
Water Casings	Overflow	0
 Water Abandoned Lines 	Sewer Lateral Lines	Stormwater Chambers
Boundary Meter	Sewer Casings	Discharge Type
Bulk/Check Meter	Sewer Manholes	◄) Outfall
Group Scheme	Standard	Overflow
Source Meter	O Backdrop	🗳 Soakaway
Waste Meter	Cascade	^o ™⊌ ^{E R} Other; Unknown
Unknown Meter ; Other Meter	CP Catchpit	Gas Networks Ireland
Non-Return	Bifurcation	Transmission High Pressure Gasline
PRV	Hatchbox	Distribution Medium Pressure Gasline
		Distribution Low Pressure Gasline
PSV	Lamphole	
Sluice Line Valve Open/Closed	Hydrobrake	ESB Networks
Butterfly Line Valve Open/Closed	 Other; Unknown 	ESB HV Lines
Sluice Boundary Valve Open/Closed	Discharge Type	HV Underground HV Overhead
Butterfly Boundary Valve Open/Closed	Outfall	HV Overnead HV Abandoned
Scour Valves		
 Single Air Control Valve 		ESB MVLV Lines
 Single Air Control Valve Double Air Control Valve 	🍑 Soakaway	MV Overhead Three Phase
	 Standard Outlet 	MV Overhead Single Phase
Water Stop Valves	DT SER Other; Unknown	- LV Overhead Three Phase
Water Service Connections	Cleanout Type	LV Overhead Single Phase
Water Distribution Chambers	Re Rodding Eye	MVLV Underground
Water Network Junctions		Abandoned
Pressure Monitoring Point	O Flushing Structure	Non Service Categories
-	^{o T 쓴 E R} Other; Unknown	Proposed
Fire Hydrant	Sewer Inlets	Under Construction
Fire Hydrant/Washout	CP Catchpit	Out of Service
ter Fittings	Gully	 Decommissioned
Сар	 Standard 	Water Non Service Assets
Reducer	^o ™ ^{∎ ∈} R Other; Unknown	Water Point Feature
Тар	Sewer Fittings	Water Pipe
Other Fittings	Vent/Col	 Water Structure
	OT HER Other; Unknown	Waste Non Service Assets
		Waste Point Feature
		***** Sewer
		Waste Structure

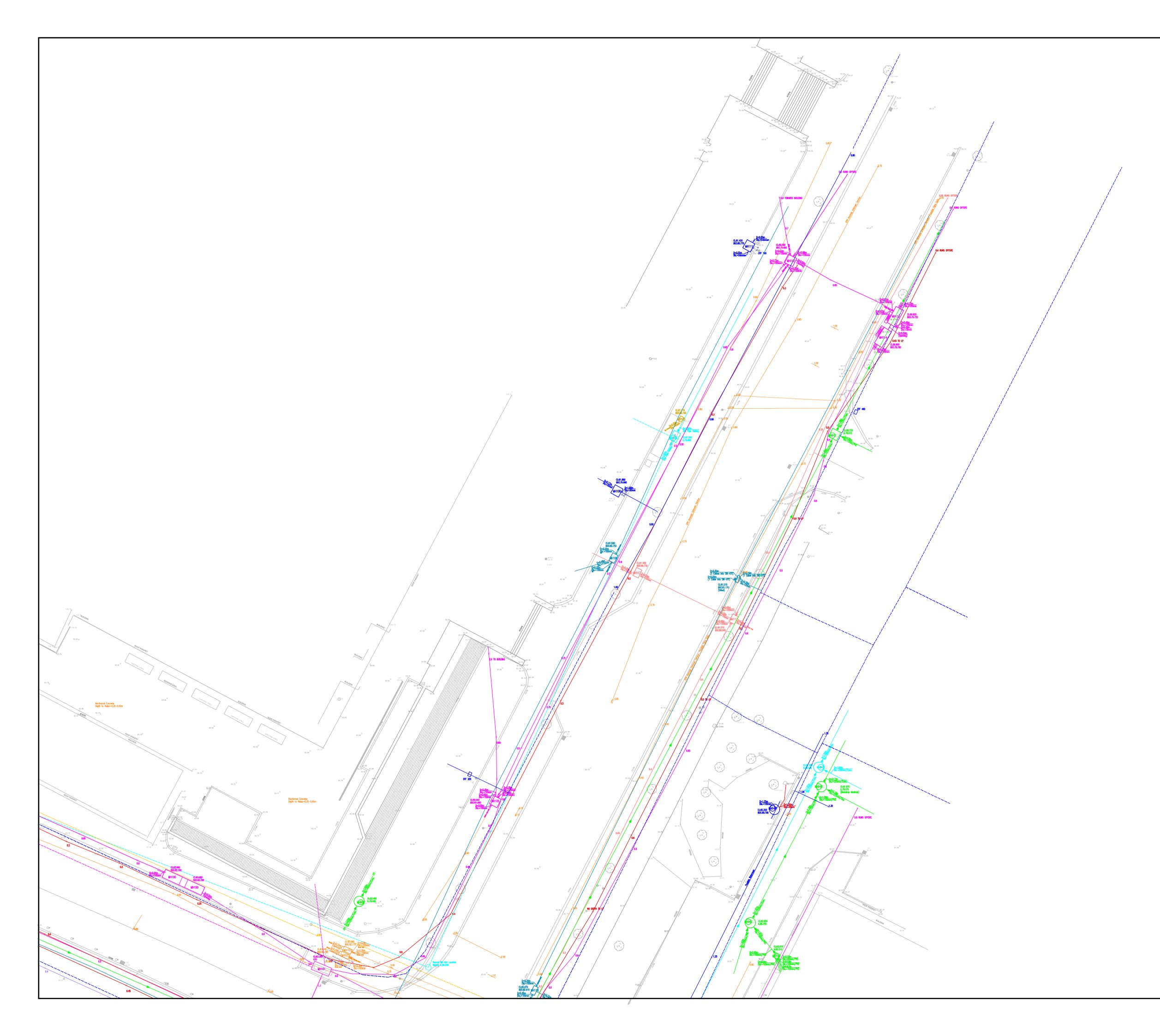
Project reference: PR-461030

Appendix C – Utility Survey

	LEGE	ND	
DESCRIPTION	COLOUR	TRACED SERVICES	INFERRED SERVICES
Foul Sewer/Water	GREEN		
Surface/Storm Water	CYAN		
Combined Sewer	BROWN		
Power	RED		
<u>Telecoms</u> Telecom	MAGENTA		
Cable TV	PURPLE		<u> </u>
Alternative Telecoms	PINK		
Watermain	BLUE		
Gas	YELLOW		
Unknown Service/Anomaly	ORANGE	0.5	
Trench Scar	LIGHT GREEN		
<u>Utility Providers Records</u> ESB Records Bord Gais Records Telecom Records Water Records	RED YELLOW MAGENTA BLUE		
Foul Sewer/Water Manhole	GREEN		
Surface/Storm Water Manhole	CYAN		
Power Manhole	RED	MH	
Telecom Manhole	MAGENTA	MH	
Watermain Manhole	BLUE		
Water Hydrant, Meter, Sluice Valve, Air Valve, Stop Cock	BLUE	HY WM SV AV SC	
Gas Line Manhole	YELLOW	MH OO	
Foul Sewer/Water Gully	GREEN	G	
Surface/Storm Water Gully	CYAN	G	
NOTES			

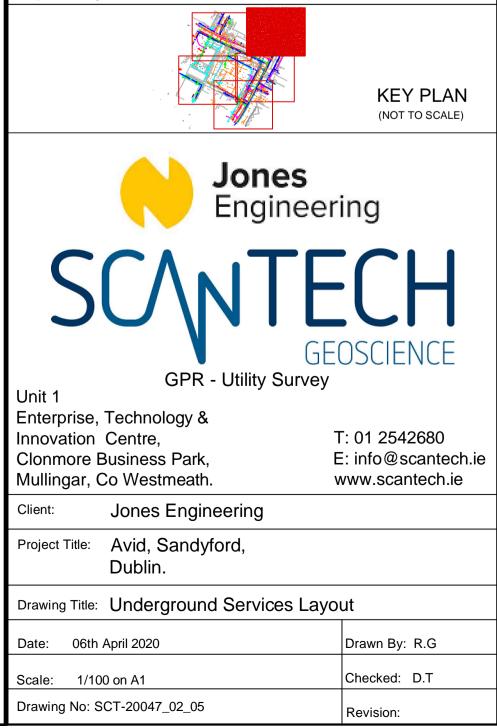

NOTES:

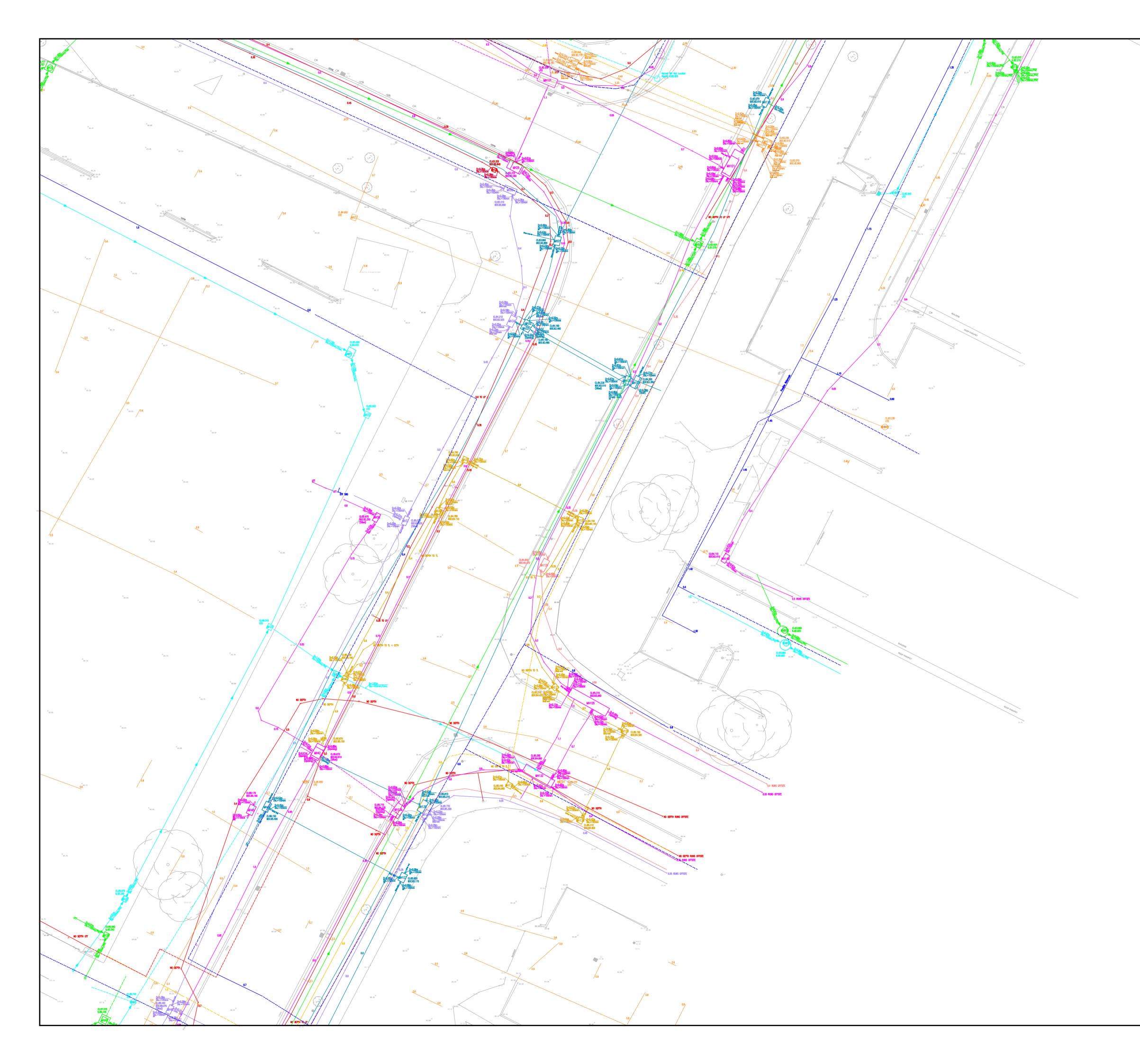

- 1. Utility survey carried out with RF & GPR equipment.
- 2. RF = RD8000 Transmitter & Receiver. 3. GPR = Ground Penetrating Radar - Mala 450 Mhz.


- 10. Where Invert Levels are shown adjacent to MH's, IC's etc. are to the invert of the lowest pipe/duct within the manhole. There may be further pipes/ducts within the MH which are located closer to ground level as per the depths marked on individual pipes/ducts. Care should be taken as higher level ducts may contain live electrical cables.

Disclaimer:

The Information on this drawing is a general guide only and the accuracy thereof cannot be guarantee No liability is accepted for any discrepancy, ommission or deviation from the actual subsurface locatio or depth to underground utilities.

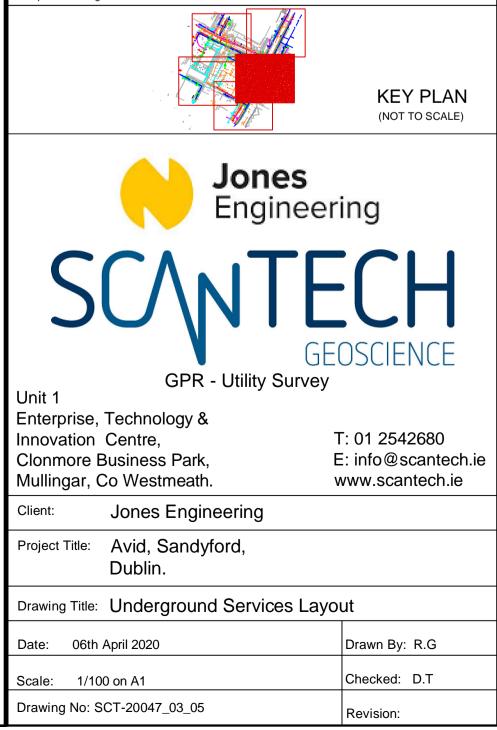


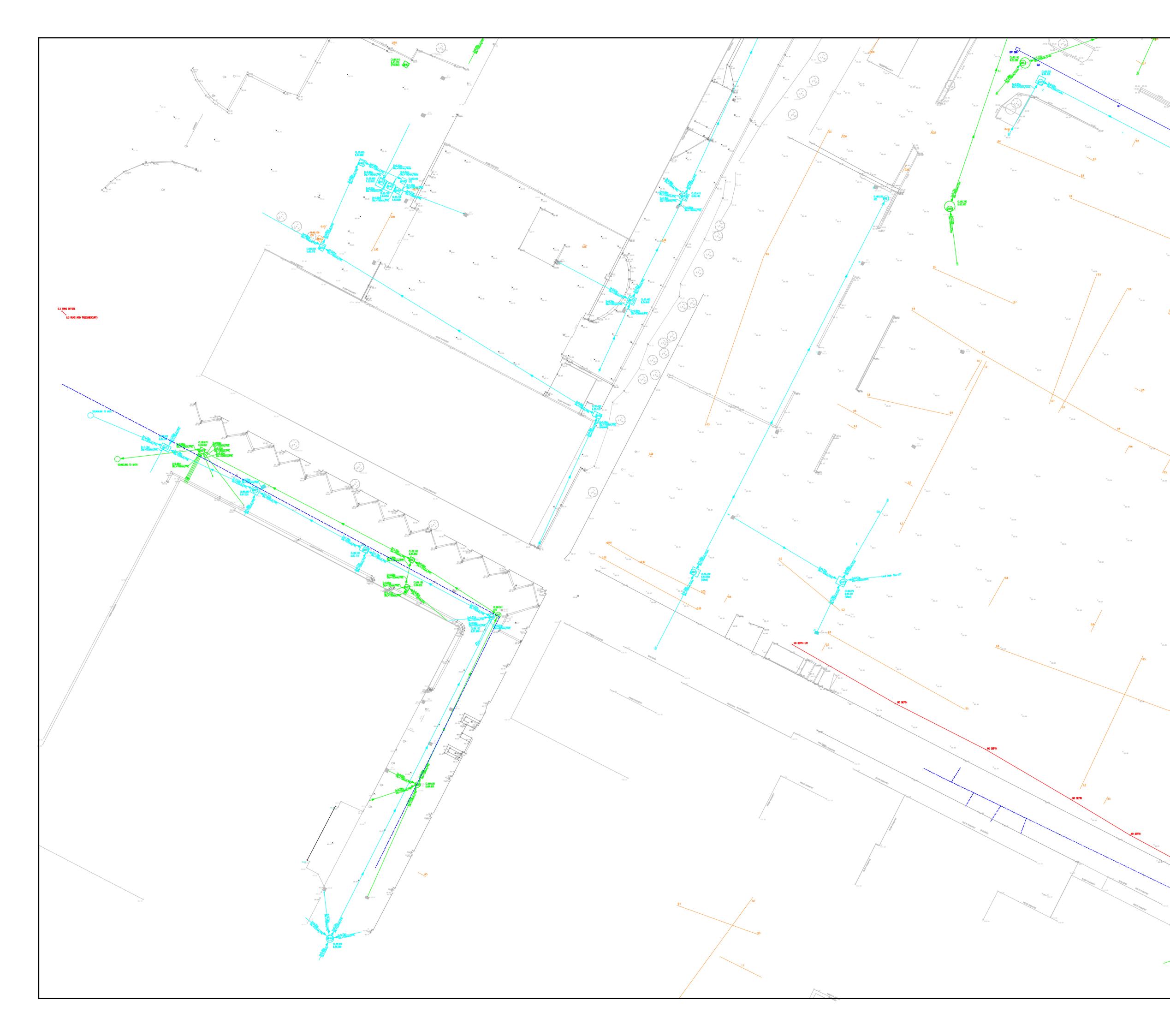

	LEGE	ND	
DESCRIPTION	COLOUR	TRACED SERVICES	INFERRED SERVICES
Foul Sewer/Water	GREEN		
Surface/Storm Water	CYAN		
Combined Sewer	BROWN		
Power	RED		
<u>Telecoms</u> Telecom	MAGENTA		
Cable TV	PURPLE		
Alternative Telecoms	PINK		
Watermain	BLUE		
Gas	YELLOW		
Unknown Service/Anomaly	ORANGE	0.5	
Trench Scar	LIGHT GREEN		
Utility Providers Records ESB Records Bord Gais Records Telecom Records Water Records	RED YELLOW MAGENTA BLUE		
Foul Sewer/Water Manhole	GREEN		
Surface/Storm Water Manhole	CYAN		
Power Manhole	RED	MH	
Telecom Manhole	MAGENTA	MH	
Watermain Manhole	BLUE		
Water Hydrant, Meter, Sluice Valve, Air Valve, Stop Cock	BLUE	HY WM SV SC	
Gas Line Manhole	YELLOW	MH	
Foul Sewer/Water Gully	GREEN	G	
Surface/Storm Water Gully	CYAN	G	
NOTES: 1. Utility survey carried out wit 2. RF = RD8000 Transmitter 8		lipment.	N

- 3. GPR = Ground Penetrating Radar Mala 450 Mhz.
- 4. Unknown voltage on electric cables.
- 5. 300mm denotes the diameter of the pipe.
- 6. 0.5 denotes depth in metres below ground level to top of pipe.
- 7. Survey carried out in September 2019.
- 8. R denotes sections of services taken from record.
- 9. UTT denotes unable to Trace, UTO denotes unable to Open
- 10. Where Invert Levels are shown adjacent to MH's, IC's etc. are to the invert of the lowest pipe/duct within the manhole. There may be further pipes/ducts within the MH which are located closer to ground level as per the depths marked on individual pipes/ducts. Care should be taken as higher level ducts may contain live electrical cables.

Disclaimer:

The Information on this drawing is a general guide only and the accuracy thereof cannot be guarantee. No liability is accepted for any discrepancy, ommission or deviation from the actual subsurface locatio or depth to underground utilities.

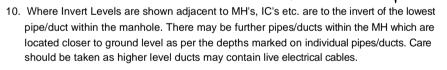

	LEGE	ND	
DESCRIPTION	COLOUR	TRACED SERVICES	INFERRED SERVICES
Foul Sewer/Water	GREEN		
Surface/Storm Water	CYAN		
Combined Sewer	BROWN		
Power	RED		
<u>Telecoms</u> Telecom	MAGENTA		
Cable TV	PURPLE		
Alternative Telecoms	PINK		
Watermain	BLUE		
Gas	YELLOW		
Unknown Service/Anomaly	ORANGE	0.5	
Trench Scar	LIGHT GREEN		
<u>Utility Providers Records</u> ESB Records Bord Gais Records Telecom Records Water Records	RED YELLOW MAGENTA BLUE		
Foul Sewer/Water Manhole	GREEN		
Surface/Storm Water Manhole	CYAN		
Power Manhole	RED	MH	
Telecom Manhole	MAGENTA	MH	
Watermain Manhole	BLUE		
Water Hydrant, Meter, Sluice Valve, Air Valve, Stop Cock	BLUE	HY WM SV AV SC	
Gas Line Manhole	YELLOW	MA	
Foul Sewer/Water Gully	GREEN	G	
Surface/Storm Water Gully	CYAN	G	
NOTES:			


NOTES:

- 1. Utility survey carried out with RF & GPR equipment.
- 2. RF = RD8000 Transmitter & Receiver.
 3. GPR = Ground Penetrating Radar Mala 450 Mhz.
- 5. GFK = Glouing Fenetiating Radar Ma
- Unknown voltage on electric cables.
 300mm denotes the diameter of the pipe.
- 6. 0.5 denotes depth in metres below ground level to top of pipe.7. Survey carried out in September 2019.
- 8. R denotes sections of services taken from record.
- 9. UTT denotes unable to Trace, UTO denotes unable to Open
- 10. Where Invert Levels are shown adjacent to MH's, IC's etc. are to the invert of the lowest pipe/duct within the manhole. There may be further pipes/ducts within the MH which are located closer to ground level as per the depths marked on individual pipes/ducts. Care should be taken as higher level ducts may contain live electrical cables.

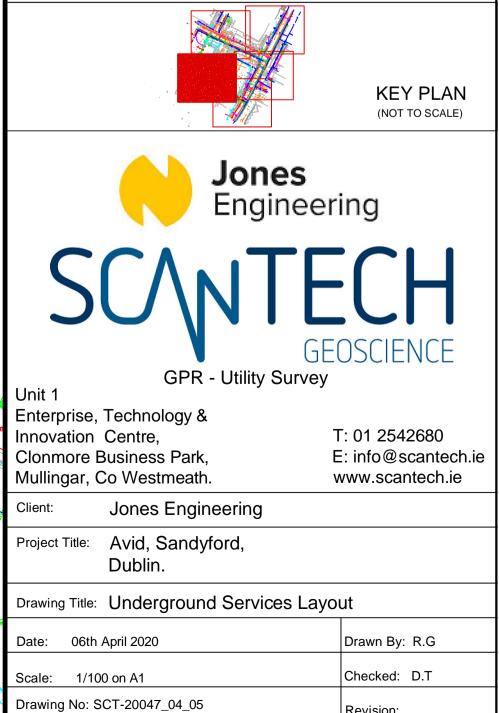
Disclaimer:

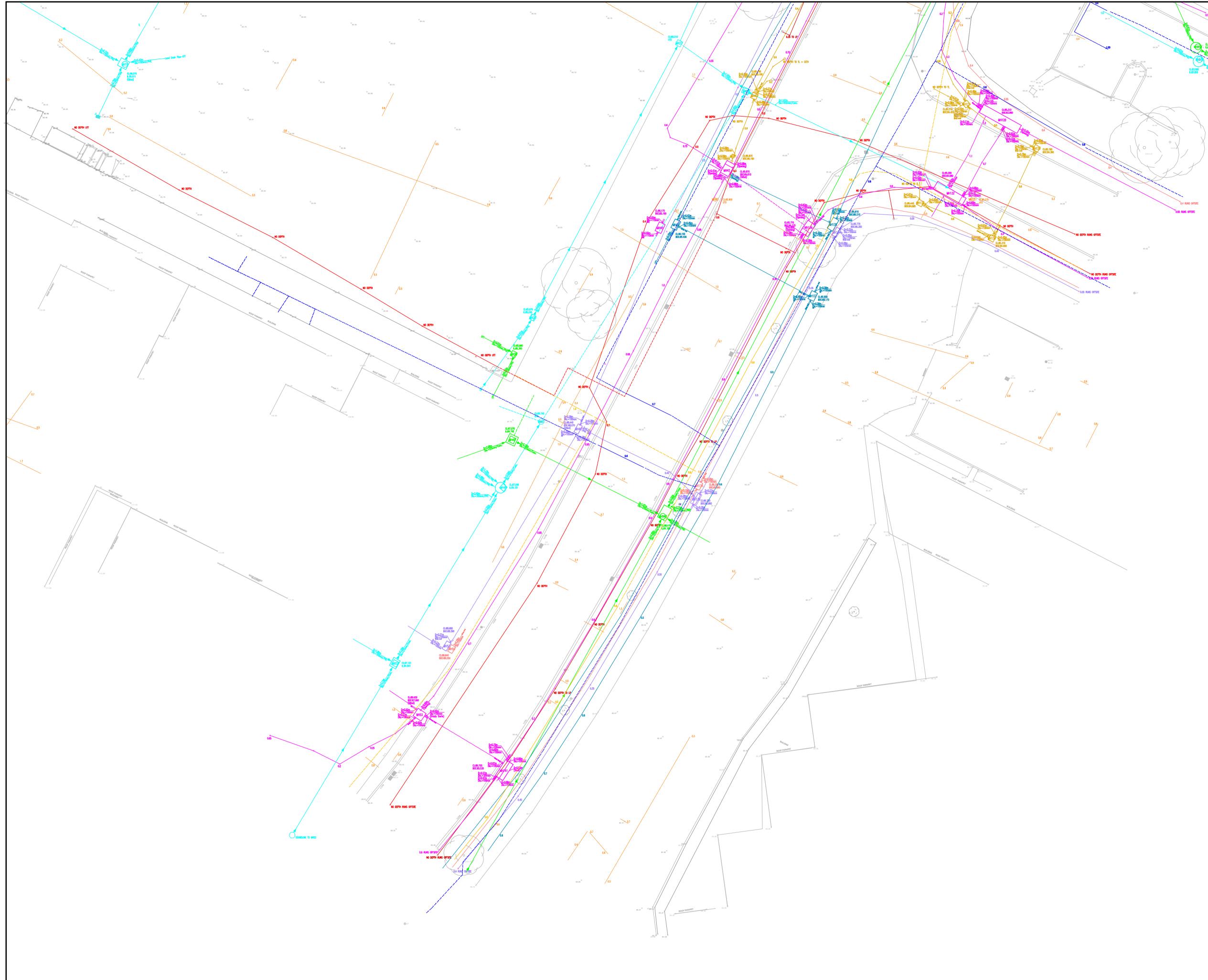
The Information on this drawing is a general guide only and the accuracy thereof cannot be guarantee. No liability is accepted for any discrepancy, ommission or deviation from the actual subsurface locatio or depth to underground utilities.



	LEGE	ND	
DESCRIPTION	COLOUR	TRACED SERVICES	INFERRED SERVICES
Foul Sewer/Water	GREEN		
Surface/Storm Water	CYAN		
Combined Sewer	BROWN		
Power	RED		
<u>Telecoms</u> Telecom	MAGENTA		
Cable TV	PURPLE		
Alternative Telecoms	PINK		
Watermain	BLUE		
Gas	YELLOW		
Unknown Service/Anomaly	ORANGE	0.5	
Trench Scar	LIGHT GREEN		
Utility Providers Records ESB Records Bord Gais Records Telecom Records Water Records	RED YELLOW MAGENTA BLUE		
Foul Sewer/Water Manhole	GREEN		
Surface/Storm Water Manhole	CYAN		
Power Manhole	RED	MH OO	
/ Telecom Manhole	MAGENTA	MH OO	
Watermain Manhole	BLUE		
Water Hydrant, Meter, Sluice Valve, Air Valve, Stop Cock	BLUE	HY WM SV AV SC	
Gas Line Manhole	YELLOW	MH	
Foul Sewer/Water Gully	GREEN	G	
Surface/Storm Water Gully	CYAN	G	

NOTES:


- 1. Utility survey carried out with RF & GPR equipment.
- 2. RF = RD8000 Transmitter & Receiver. 3. GPR = Ground Penetrating Radar - Mala 450 Mhz.
- Unknown voltage on electric cables.
- 5. 300mm denotes the diameter of the pipe.
- 6. 0.5 denotes depth in metres below ground level to top of pipe.
- 7. Survey carried out in September 2019.
- 8. R denotes sections of services taken from record.
- 9. UTT denotes unable to Trace, UTO denotes unable to Open


A

Disclaimer:

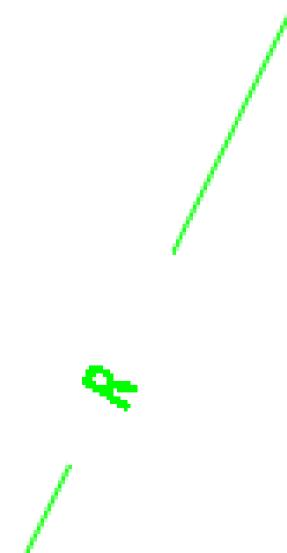
The Information on this drawing is a general guide only and the accuracy thereof cannot be guarantee No liability is accepted for any discrepancy, ommission or deviation from the actual subsurface locatio or depth to underground utilities.

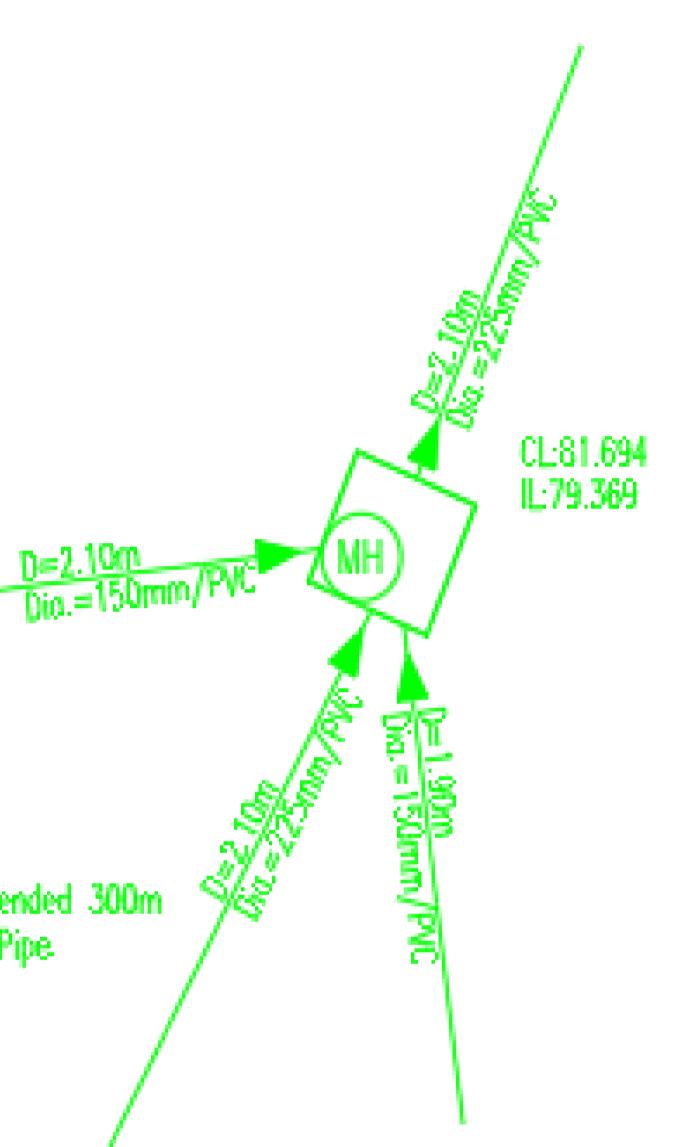
Revision:

/ x .	I	_EGE	NI)	
0.5			TRACED	INFERRED
P 58	DESCRIPTION	COLOUR	SERVICES	SERVICES
	Foul Sewer/Water	GREEN		
	Surface/Storm Water	CYAN		
	Combined Sewer	BROWN		
	Power	RED		
)	<u>Telecoms</u> Telecom	MAGENTA		
	Cable TV	PURPLE		
	Alternative Telecoms	PINK		
	Watermain	BLUE		
	Gas	YELLOW		
	Unknown Service/Anomaly	ORANGE		
	Trench Scar	LIGHT GREEN		
	Utility Providers Records ESB Records	RED		
	Bord Gais Records Telecom Records	YELLOW		
	Water Records	BLUE		
	Foul Sewer/Water Manhole	GREEN		
	Surface/Storm Water Manhole	CYAN		
	Power Manhole	RED	MH	
	Telecom Manhole	MAGENTA	MH	
	Watermain Manhole	BLUE		
	Water Hydrant, Meter, Sluice Valve, Air Valve, Stop Cock	BLUE	HY WM SV AV SC	
	Gas Line Manhole	YELLOW	MH	
	Foul Sewer/Water Gully	GREEN	G	
	Surface/Storm Water Gully	CYAN	G	
	 NOTES: Utility survey carried out with RF = RD8000 Transmitter & GPR = Ground Penetrating Unknown voltage on electric 300mm denotes the diameter 0.5 denotes depth in metres Survey carried out in Septer R denotes sections of servic UTT denotes unable to Tract Where Invert Levels are shown pipe/duct within the manhole located closer to ground level should be taken as higher let Disclaimer: The Information on this drawing is a generative section of the section of th	Receiver. Radar - Mala 45 cables. er of the pipe. below ground le nber 2019. ces taken from re e, UTO denotes wan adjacent to le c. There may be el as per the dep vel ducts may co	0 Mhz. evel to top of pipe. ecord. unable to Open MH's, IC's etc. are to the further pipes/ducts withir ths marked on individual ontain live electrical cable	n the MH which are pipes/ducts. Care s. of cannot be guarantee
				(EY PLAN NOT TO SCALE)
	SCA	Ν	ineering FEC GEOSC	H IENCE
	Unit 1 Enterprise, Technology	R - Utility &	Guivey	
	Innovation Centre,		-	2542680 @scantech.ie
	Clonmore Business Par Mullingar, Co Westmea			@scantech.ie cantech.ie
	Client: Jones Eng	gineering		

 Project Title:
 Avid, Sandyford, Dublin.

 Drawing Title:
 Underground Services Layout


 Date:
 06th April 2020
 Drawn By: R.G


 Scale:
 1/100 on A1
 Checked: D.T

 Drawing No:
 SCT-20047_05_05
 Revision:

Additional Survey on Foul Manhole on Arkle Road

Sonde Only Extended 300m into Upstream Pipe

Appendix D – Surface Water Audit (Stage 1)

JBA Project Code	2020s0790
Contract	Residential Development– Carmanhall Rd., Sandyford, Dublin 18
Client	Marlet Property Group
Date_Rev	16th February 2021_P03
Author	Jamie Cullen
Subject	Stormwater Audit - Stage 1 Report

1 Proposed Residential Development, Carmanhall Rd., Sandyford, Dublin 18.

1.1 Introduction

JBA Consulting have been contracted by Marlet Property Group c/o AECOM Ireland Limited to undertake a Stage 1 audit of the surface water drainage design for the proposed residential development at Carmanhall Road, Sandyford, Dublin 18. The surface water audit was undertaken in advance of a planning submission.

The audit has been completed in accordance with Dún Laoghaire Rathdown County Council's (DLRCC) Stormwater Audit Procedure (Rev 0, Jan 2012). The results of the audit are set out in the table below.

Design Parameter	Audit Result
Proposed Development	The site is currently a brownfield site and was previously occupied by a commercial building which has now been demolished.
	The proposed development will consist of the construction of a Build-To-Rent residential development within a new 6-17 storey over basement level apartment building comprising 438 no. apartments.
	The total site area is stated to be 0.73 hectares (ha). AECOM also used the total site area as the area which is positively drained for their calculations.
	The subject of this Stage 1 stormwater audit is to review the proposed surface water drainage design and sustainable urban drainage system proposals for the proposed development.
Relevant Studies/Documents	 The following documents were considered as part of this surface water audit: Greater Dublin Strategic Drainage Strategy (GDSDS); Greater Dublin Regional Code of Practice for Drainage Works; The SUDs Manual (CIRIA C753). DLRCC Green Roof Guidance Document (September 2011) The audit is based on the ACM Infrastructure Report dated 17 August 2020 (Rev 0) and associated drawings.
Key Considerations & Benefits of SUDs	 The key benefits and objectives of SUDs considered as part of this audit and listed below include: Reduction of run-off rates; Provision of volume storage; Volume treatment provided; Reduction in volume run-off; Water quality improvement; Biodiversity.
Site Characteristics	 Soil: The soil type has been indicated as S4 (SPR = 0.47) which is based on site investigation borehole logs which classified the underlying soil as "stiff to very stiff brown and grey sandy gravelly clay". Rainfall (basis for surface water pipeline network design): Rainfall parameters can be estimated using Met Eireann data, using the Flood Studies Report (FSR) values or the values in the GDSDS. The Met Eireann method can be more representative of a site if selected correctly. A comparison of values estimated by AECOM and JBA is shown below:

1.2 Stage 1 Audit

JBA Project Code

Contract

Client Date_Rev Author Subject 2020s0790 Residential Development– Carmanhall Rd., Sandyford, Dublin 18 Marlet Property Group 16th February 2021_P03 Jamie Cullen **Stormwater Audit - Stage 1 Report**

	AECC Rainfall model: Met É M5-60 (mm): 17.80 Ratio R: 0.270	mm	JBA Value Met Éireann 17.80mm 0.275
	The Greenfield Runoff F from the GDSDS, which development site would (whichever is greater).	Rate has been en states that surf be limited to the Greenfield Rund eport 124 (IH12	ace water attenuation design): stimated by AECOM using guidance ace water runoff from the overall e equivalent of QBar or 2l/s/ha ff Rate has been estimated using the 4) method for flood estimation on smal).
	ACM Qbar: 5.26 J		A value 11 l/s
			OM are restricting their runoff from the at runoff will be limited to 2 l/s for the s
			e storm sewer calculations account for rea indicated in section 1 of the
			cated as 100 years return period which n added for climate change purposes.
	high of c. 87m along the Carmanhall Road. The a	e south-western adopted finished	site in a north-eastern direction from a boundary to a low of c. 84m along the I floor levels together with final site lev s being feasible for the site.
SuDS Measures Considered	There is a topographica high of c. 87m along the Carmanhall Road. The a would allow for most Su	e south-western adopted finished DS technologie	boundary to a low of c. 84m along the d floor levels together with final site lev
	There is a topographica high of c. 87m along the Carmanhall Road. The a would allow for most Su AECOM confirmed the f	e south-western adopted finished DS technologie	boundary to a low of c. 84m along the d floor levels together with final site lev s being feasible for the site.
	There is a topographica high of c. 87m along the Carmanhall Road. The a would allow for most Su AECOM confirmed the f conclusions reached:	e south-western adopted finished DS technologie following SuDS Comments A green roof the apartmer	boundary to a low of c. 84m along the d floor levels together with final site lev s being feasible for the site. measures were considered and system is proposed to cover 58% of t blocks which is marginally less than ent from DLRCC to have a minimum
	There is a topographica high of c. 87m along the Carmanhall Road. The a would allow for most Su AECOM confirmed the f conclusions reached: SUDS Technology	e south-western adopted finished DS technologie following SuDS Comments A green roof the apartmer the requirem of 60% cove AECOM are runoff from t the exterior of medium that will drain to tl overflow outl	boundary to a low of c. 84m along the d floor levels together with final site lev s being feasible for the site. measures were considered and system is proposed to cover 58% of t blocks which is marginally less than ent from DLRCC to have a minimum
	There is a topographica high of c. 87m along the Carmanhall Road. The a would allow for most Su AECOM confirmed the f conclusions reached: SUDS Technology Green / Blue Roofs Swale/ Filter Drain /	e south-western adopted finished DS technologie following SuDS Comments A green roof the apartmer the requirem of 60% cove AECOM are runoff from t the exterior of medium that will drain to th overflow outh and flood the	boundary to a low of c. 84m along the d floor levels together with final site levels being feasible for the site. measures were considered and system is proposed to cover 58% of at blocks which is marginally less than ent from DLRCC to have a minimum proposing to use dry swales to take he proposed private footpath around of the apartment blocks. Using a filter will overlay an underlain system that he proposed surface water sewer with ets to ensure runoff does not back up surface during extreme events. baving system are proposed on the and 2 no. parking spaces outside the
	There is a topographica high of c. 87m along the Carmanhall Road. The a would allow for most Su AECOM confirmed the f conclusions reached: SUDS Technology Green / Blue Roofs Swale/ Filter Drain / Infiltration trench	e south-western adopted finished DS technologie following SuDS Comments A green roof the apartmer the requirem of 60% cove AECOM are runoff from t the exterior of medium that will drain to tl overflow outl and flood the Permeable p access road	boundary to a low of c. 84m along the d floor levels together with final site lev s being feasible for the site. measures were considered and system is proposed to cover 58% of at blocks which is marginally less than ent from DLRCC to have a minimum c. proposing to use dry swales to take he proposed private footpath around of the apartment blocks. Using a filter will overlay an underlain system that he proposed surface water sewer with ets to ensure runoff does not back up surface during extreme events. baving system are proposed on the and 2 no. parking spaces outside the ar park.

JBA consultine

JBA

JBA

JBA Project Code

Contract

Client Date_Rev Author Subject 2020s0790 Residential Development– Carmanhall Rd., Sandyford, Dublin 18 Marlet Property Group 16th February 2021_P03 Jamie Cullen **Stormwater Audit - Stage 1 Report**

	Other Sediment Management	No additional sy	stems are proposed.
	Surface Water Attenuation	StormTech units attenuation sto discharge of su been divided int volumes and pr of the surfa Attenuation will	brage will be provided in 4 no. s to ensure that there is adequate brage for the required limited rface water volumes. The site has o sub catchments to reduce flows, ovide treatment of run-off, as part ce water management train. be provided for events up to and 0% AEP rainfall event of each sub-
	Site Run-off Rates		ed to limit discharge to 2l/sec for all agreed with DLRCC.
	Rainwater Harvesting	None proposed.	
	Detention Basins, Retention Ponds, Stormwater Wetlands	Not included in o	design.
	Tree Root Structural Cell Systems, Bio- retention, rain garden		as are proposed to drain the -floor level from the courtyard.
Surface Water Drainage Design	and discharged at requirements and as No storm pipes less	the controlled rate highlighted within this	r are proposed for sections of the si
SUDs Management Train	(interception storage) Interception has been swales. A petrol inter) and attenuation with n provided below biore rceptor is also incorpo	addressed by the use of infiltration outflow controlled by a Hydro-brak etention areas, permeable paving, and orated into the design to treat surfact placed after the Hydro-brake.
	As recommended w	ith the SUDs Manua	vel of this development I (Table 3.3) assuming effective pr er of treatment train components a
	1	No. of treatment train components recommended	Comment/Proposals
	Roof areas (apartments)	1	Green roof system covering 58% of total roof area.
	Residential roads, parking areas,	2	Permeable paving on the access road, swales on the private footpath and bioretention areas fo

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com JBA consultine

JBA

JBA Project Code

Contract

Client Date_Rev Author Subject 2020s0790 Residential Development– Carmanhall Rd., Sandyford, Dublin 18 Marlet Property Group 16th February 2021_P03 Jamie Cullen **Stormwater Audit - Stage 1 Report**

	zones		the courtyard to first floor.
	Refuse collection, industrial areas, loading bays, lorry parks and highways.	3	Currently no recycling centre detailed on drawings.
	SuDS Manual. Fu	rther clarification is sou	ent train recommendations within the ght from AECOM on the areas which as and can be seen in Appendix A.
Climate Change	for the storm sewe		been included for climate change, both and for the rainfall intensities for the es.
Discharge Rate / Flow Control	From the IH124 me from the developm		ge rate, using the FSR growth curves
	This is in accordan	ce with the requirements	s of the GDSDS.
	off from the site w device, while provi	vill be attenuated to 21/s ding surface water atter	d with DLRCC that surface water run sec using a Hydro-brake flow contro- nuation for the full 1 in 100 year even sed stormwater design / attenuation
	are the bioretention	areas and the swales.	site and the ones which are proposed For the calculations 0.777ha was used site which is acceptable.
	Hydro-brake is likel	y to occur. Clear passag (age. Preventative meas	et of 56mm therefore, blockage of the ges less than 75mm can be particularly sures against blockage will be required
	A minimum of 500 accordance with G		WL to FFL is proposed which is in
	No flooding at grou year storm + Clima		the Microdrainage output for the 100
Volume Storage	Currently, AECOM been sized for the	are proposing an atten	the proposed attenuation volumes uation volume of $c.537m^3$ (which had $+$ climate change) and is based of all attenuation storage.
Volume Run-off	following the natura site and with the im the site is limited to	al topography of the site plementation of SuDS r	the north-western boundary of the sit e. As the site is currently a brownfield neasures and with the discharge from hts as per the requirements of DLRCC is currently occurring.
Treatment Volume / Water Quality Improvement	24.6 of CIRIA C7	753. Additional imperm	tly proposed in accordance with Table neable areas which are draining to to see if interception requirements ca

JBA consultine

JBA

JBA

JBA Project Code	2020s0790
Contract	Residential Development– Carmanhall Rd., Sandyford, Dublin 18
Client	Marlet Property Group
Date_Rev	16 th February 2021_P03
Author	Jamie Cullen
Subject	Stormwater Audit - Stage 1 Report

JBA renewabl energy

Biodiversity	Unless a permanent pond is incorporated into the design, not deemed viable t enhance biodiversity any further given current proposals incorporate green roo and bioretention areas.
Return Period	A 100-year return period plus 10% for climate change has been used in the design for the attenuation systems.
Exceedance flows	AECOM have considered exceedance flows due to 50% blockage of the Hydr brake. These flows are currently proposed to overflow onto Carmanhall Road or when the flood exceeds 5m ³ . Refer Dwg. 0601.
	To minimise the risk of blockage AECOM should consider a detail for the overflo from the swale or any other open features to be developed at detailed desi- stage.
Health & Safety and Maintenance Issues	The proposed drainage system comprises manholes, StormTech attenuation systems, swales, bioretention area, underground pipes and infiltration capacity the underside of the interception storage units. These elements are considered acceptable from a Health & Safety perspective once supplier/manufactured guides are followed and complied with during the detailed design, construction and operation.
	Optimum performance of the SuDS treatment train is subject to the frequency maintenance provided. At detailed design stage, it is recommended that maintenance regime be adopted.
	Regular maintenance and cleaning of the isolator row will be required to remove any sediments, particularly in the wake of heavy rainfall events or local floods.
	Regular maintenance of the Hydro-brake will also be required to remove ar blockages, particularly in the wake of heavy rainfall events or local floods.
	Particular consideration is required at detailed design stage to the design maintenance requirements and whole life plan (and replacement) of the interceptor storage.
	It is recommended that the petrol interceptor be fitted with an audible high-lev silt and oil alarm for maintenance and safety purposes. Regular inspection ar maintenance is recommended for the petrol interceptor. Please note that silt ar debris removed from the petrol interceptor during maintenance will be classifie as contaminated material and should only be handled and transported by suitably licensed contractor and haulier and disposed of at a suitably license landfill only.
Design Review Process	Upon review of AECOM's initial drainage design, JBA Consulting provided feedback, resulting in some modifications, namely;
	 Additional interception methods required for impermeable areas currently proposed to drain to permeable locations. Consideration of exceedance flows from blockage of SuDS features and Hydro-brake
	 Empty rate of the tank to deal with successive storm events.
	A summary of comments and record of the audit trail are appended to this report.
	Based on this being at preliminary design stage and a Stage 1 Surface Wate Audit, JBA Consulting's comments have all been satisfactorily addressed of sufficient commitment provided that details will be confirmed at detailed design

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA consulting

JBA risk managemer

JBA Project Code

Contract

Client Date_Rev Author

Subject

2020s0790 Residential Development– Carmanhall Rd., Sandyford, Dublin 18 Marlet Property Group 16th February 2021_P03 Jamie Cullen **Stormwater Audit - Stage 1 Report**

Principal Engineer

	stage.
Audit Result	JBA Consulting considers that the surface water drainage design for the proposed development is acceptable and meets the requirements of the Stage 1 Stormwater Audit.
Audit Report Prepared by:	Jamie Cullen BEng (Hons) MSc. Assistant Engineer
Approved by:	Chris Wason BEng CEng MICE

Note:

JBA Consulting Engineers & Scientists Ltd. role on this project is as an independent reviewer/auditor. JBA Consulting Engineers & Scientists hold no design responsibility on this project. All issues raised and comments made by JBA are for the consideration of the Design Engineer (AECOM). Final design, construction supervision, with sign-off and/or commissioning of the surface water system so that the final product is fit for purpose with a suitable design, capacity and life-span, remains the responsibility of the Design Engineers.

JBA consulting

JBA Project Code

Contract

Client Date_Rev Author Subject 2020s0790 Residential Development– Carmanhall Rd., Sandyford, Dublin 18 Marlet Property Group 16th February 2021_P03 Jamie Cullen **Stormwater Audit - Stage 1 Report**

Appendix A – Audit Trail Record

JBA consultine

JBA

JBA

Page 7 of 7

JBA Consulting Stormwater Audit - Stage 1 Feedback Form

Project: Residential Development at Carmanhall Road, Sandyford, Dublin 18

Date: 04/11/2020

JBA Reviewers Jamie Cullen - Assistant Engineer

Project Number: 2020s0790

Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative	Acceptable / Not Acceptable
	04/11/2020			
	Reference Documents - Proposed Drainage Layout - PR461030-ACM-XX-00-DR-CE-10-0502 - Proposed Levels Layout & Exceedance Route - PR461030-ACM-XX-00-DR-CE-10-0601 - Proposed SuDs Layout - PR461030-ACM-XX-00-DR-CE-10-0501 - Stage 2 - Sandyford SHD - Infrastructure Report			
1	Section 2.2.1 Infrastructure Report In the Green Roof section it is stated that "Approximately 58% of the total roof area is proposed as green roof/planting. This is noted to be marginally below the 60% as set out in the DLRCC development plan". It is not clear if this such coverage has been discussed and agreed with DLRCC.	Aecom to review and advise.	The green roof provision will be increased to 60%.	Acceptable
2	Section 2.2.1 Infrastructure Report In the Green Roof section it is stated that "Approximately 58% of the total roof area is proposed as green roof/planting. This is noted to be marginally below the 60% as set out in the DLRCC development plan but the non green roof areas will drain to the green roof". As per Table 24.6 of the SuDS Manual, interception is not provided in this instance.	Aecom to review and advise.	Noted. The green roof provision will be increased to 60%. It is now proposed to provide permeable paving on the hardstanding roof areas. Table 24.6 also states interception is provided by lined pavements. Site Investigation revealed no infiltration is present on site. It is therefore proposed to comply with sub-criterion 1.2 of Table 6.3 of the GDSDS by providing treatment storage, as sufficient interception is not achievable, i.e. sub-criterion 1.1 is not achievable.	Acceptable
3	Section 2.2.1 Infrastructure Report In the Swales section it is stated that "300mm wide dry swales are proposed to take runoff from the proposed private footpath". As no gradients etc provide, it is not clear if interception is provided as per Table 24.6 of the SuDS Manual.	Aecom to review and advise.	Site Investigation revealed no infiltration is present on site. It is therefore proposed to comply with sub-criterion 1.2 of Table 6.3 of the GDSDS by providing treatment storage, as sufficient interception is not achievable, i.e. sub-criterion 1.1 is not achievable. The swale has been proposed to provide treatment. However, given the levels, it should be mangeable to provide a gradient less than or equal to 1:100 in order to allow interception, as per Table 24.6. Drawings will be updated to include the relevant levels.	Acceptable
4	Section 2.2.1 Infrastructure Report The bioretention areas are proposed to drain the steps to the first floor level from the courtyard and will also drain balconies via downpipes. According to the CIRIA manual table 24.6 "Areas of the site drained to unlined bioretention components can be assumed to comply where the impermeable surface area is less than 5 times the vegetated surface area receiving the runoff. They can be designed to deliver interception for larger areas where suitable infiltration capacity is available". It is not clear if these bioretention areas are compling with interception requirements as set out above.	Aecom to review and advise.	Site Investigation revealed no infiltration is present on site. It is therefore proposed to comply with sub-criterion 1.2 of Table 6.3 of the GDSDS by providing treatment storage, as sufficient interception is not achievable, i.e. sub-criterion 1.1 is not achievable. The bioretention will be lined as infiltration is not available and bioretention areas are also proposed at first floor level. Table 24.6 does not mention the case of lined bioretention. Negligible interception through evapotranspiration will be assumed.	Acceptable
5	Section 2.2.1 Infrastructure Report & Dwg. 0501 The permeable paving proposed shows that there will be no infiltration allowed in the report while on dwg. 0501 states that balconies will drain to the permeable paving. According to the CIRIA Manual Table 24.6 "Interception methods where permeable pavement also drains an adjacent impermeable area and is lined compliance cannot be deemed to have been achieved and extra downstream interception components will be required".	Aecom to review and advise.	Site Investigation revealed no infiltration is present on site. It is therefore proposed to comply with sub-criterion 1.2 of Table 6.3 of the GDSDS by providing treatment storage, as sufficient interception is not achievable, i.e. sub-criterion 1.1 is not achievable. The sub-base of the permeable paving will be lined with an impermeable membrane.	Acceptable
6	Proposed Drainage Layout Dwg. 0502 In terms of the surface car-parking insufficient detail is provided in relation to the fall of perimeter access roads and local landscaping which may convey surface flows in under the proposed building, especially during exceedance rainfall events, which may require local drainage	Aecom to review and advise.	Local Drainage will be provided at these locations.	Acceptable

Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative	Acceptable / Not Acceptable
7	Proposed Drainage Layout Dwg. 0502 During extreme storm events the infiltration capacity of the permeable paving will be limited to the capacity of the SuDS feature in addition to infiltration capacity. Exceedance flows in these areas will need to be addressed and conveyed to the attenuation tanks. Exceedance rainfall and/or blockage of the permeable paving may also require local drainage to the underside of the proposed building.	Aecom to review and advise.	Noted. Channels and/or gullies will be provided to allow for exceedance flows.	Acceptable
8	Section 2.2 Infrastructure Report & Proposed Drainage Layout Dwg. 0502 In the report it is mentioned that it is proposed to drain additional runoff from the widened public footpath and new cycle lane on the western side of Blacktorn Road (replacing exisitng landscaping) to the existing road gully. Has agreement been reached with DLRCC that these additional impermeable areas can drain to the existing network with no attenuation requirements and has the decision to restrict disharge from the subject development at 2 l/sec been based on compensation for same.	Aecom to review and advise.	DLRCC have queried why the Qbar of 5.26 l/s had not been used. AECOM have asked DLRCC would Qbar still be an agreeable discharge rate, given the additional public impermeable area that will be provided and will be draining to the public network unattenuated. DLRCC have commented that using Qbar as the discharge rate is acceptable, once no run-off from the private site enters the public drainage network unattenuated. Qbar will be used as the maximum discharge rate from the site.	Acceptable
9	To reduce the demand on the potable water supply or provide surface water management has rainwater harvesting been considered to use for the toilet flushing facilities in the apartment block.	Aecom to review and advise.	The M&E engineer is not proposing rainwater harvesting, as there is insufficient space available in the basement for a rainwater harvesting tank.	Acceptable
10	Proposed Levels Layout & Exceedance Route Dwg. 0601 In the event of 50% blockage of the hydro-brake exceedance flows are shown to build up to 5m ³ before flowing down Carmanhall Rd. To minimise risk of blockage, a detail for the overflow from the swale or any other open features should be developed at detailed design stage.	Aecom to review and advise.	This will be developed at detailed design stage.	Acceptable
11	Appendix D Infrastructure Report & Dwg. 0502 Pg. 5 of the MicroDrainage output shows that the celluar storage unit is located at \$11 along with the hydro-brake located at \$11. The attenuation unit is located before \$7 and only one storage structure is mentioned in the MicroDrainage output and not 4 seperate ones as shown on Dwg. 0502. Is the location of the storage units sensitive to results?	Aecom to review and advise.	As per Innovyze's advice, the flow control and tank were placed on the same manhole to prevent unstable analysis. The model has been updated to include two tanks (changed from 4, as a result of the higher discharge rate from the site), at their proposed locations, upstream of the hydrobrake manhole.	Acceptable
12	Appendix D Infrastructure Report On pg.6 of the MicroDrainage output the margin for flood risk warning is set at 50mm which is a very low margin of error. Flood risk threshold should be set to 300mm below the cover level.	Aecom to review and advise.	300mm will be used.	Acceptable
13	Empty Rate of Tank Given the storage volume of 537m ³ and the discharge rate of 2l/sec, the empty rate is 74.5 hours. Need to consider the probability of successive storm events.	Aecom to review and advise.	As the discharge rate of 4.9 l/s (Qbar) has been used, the empty rate is significantly quicker. Microdrainage 2020.1 includes a Half Drain Time feature. The Half Drain Time shows the time taken for the water volume in the tank to reduce to 50%, based on the outflow rate and design head. The Half Drain Times are 605 & 632 minutes for the two tanks respectively, for the critical storm: 600 minute 100 year Winter +10% climate change.	Acceptable
14	Gradient of Entrance Road Given the proposed fall towards the entrance/exit onto Carmanhall Road, there is the potential for storm flows to run off site as no road gully and/or ACO unit is provided. Consideration should be given to provision of local drainage to connect to the proposed swale along the northern boundary or other internal site drainage.	Aecom to review and advise.	This will be incoporated.	Acceptable

Project reference: PR-461030

Appendix E – Qbar Calculation

Dara Magee

Former Avid Technology International Site,

the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

This is an estimation of the Uptien 18 green field runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and

the basis for setting consents for the drainage of surface water runoff from sites.

Carmanhall Road, Sandyford Industrial Estate,

Calculated by:

Site name:

be

Site location:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Latitude:	53.27593° N
Longitude:	6.20973° W
Reference:	1061112556
Date:	Jun 23 2020 08:01

Runoff estimation app	roach	IH124		
Site characteristics				Notes
Total site area (ha):		0.73		(1) Is Q _{BAR} < 2.0 I/s/ha?
Methodology				
Q _{BAR} estimation method:	Calculate fro	om SPR and	I SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate fro	om SOIL typ	e	
Soil characteristics		Default	Edited	
SOIL type:		1	4	(2) Are flow rates < 5.0 l/s?
HOST class:		N/A	N/A	Where flow rates are less than 5.0 l/s consent for discharge is
SPR/SPRHOST:		0.1	0.47	usually set at 5.0 l/s if blockage from vegetation and other
Hydrological characte	ristics	Default	Edited	materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):		985	985	
Hydrological region:		12	12	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 year:		0.85	0.85	Where groundwater levels are low enough the use of soakaways
Growth curve factor 30 year	rs:	2.13	2.13	to avoid discharge offsite would normally be preferred for disposal of surface water runoff.
Growth curve factor 100 yes	ars:	2.61	2.61	
Growth curve factor 200 years	ars:	2.86	2.86) []

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	0.18	5.26
1 in 1 year (l/s):	0.16	4.47
1 in 30 years (l/s):	0.39	11.19
1 in 100 year (l/s):	0.48	13.72
1 in 200 years (l/s):	0.52	15.03

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix F - Met Éireann Rainfall Data

M5,60 = 17.8	
R = M5,60min / M5,2d = 0.275	

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 319455, Northing: 226518,

	Interval						Years								
DURATION	6months, lyear,	2,	3,	4,	5,	10,		30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.5, 3.7,	4.4,	5.4,	6.1,	6.6,						,	19.8,	21.6,	23.1,	N/A,
10 mins	3.5, 5.2,	6.1,	7.5,	8.5,	9.2,							27.6,	30.1,	32.2,	N/A,
15 mins	4.1, 6.1,	7.2,	8.8,	10.0,	10.9,	13.9,	17.4,	19.8,	23.2,	26.3,	28.7,	32.5,	35.4,	37.9,	N/A,
30 mins	5.4, 7.9,	9.3,	11.4,	12.8,	13.9,	17.6,	21.9,	24.8,	29.0,	32.7,	35.6,	40.1,	43.6,	46.6,	N/A ,
1 hours	7.2, 10.3,	12.0,	14.6,	16.4,	17.8,	22.4,	27.6,	31.2,	36.1,	40.6,	44.1,	49.5,	53.7,	57.2,	N/A ,
2 hours	9.5, 13.4,	15.6,	18.8,	21.0,	22.8,	28.4,	34.8,	39.1,	45.1,	50.4,	54.6,	61.1,	66.1,	70.2,	N/A ,
3 hours	11.1, 15.7,	18.2,	21.9,	24.4,	26.3,	32.6,	39.9,	44.6,	51.3,	57.3,	61.9,	69.1,	74.6,	79.2,	N/A ,
4 hours	12.5, 17.5,	20.2,	24.3,	27.0,	29.1,	36.0,	43.9,	49.0,	56.3,	62.7,	67.7,	75.4,	81.3,	86.3,	N/A ,
6 hours	14.7, 20.5,	23.6,	28.1,	31.2,	33.6,	41.4,	50.2,	56.0,	64.0,	71.2,	76.7,	85.2,	91.8,	97.3,	N/A ,
9 hours	17.3, 23.9,	27.4,	32.6,	36.1,	38.8,	47.6,	57.5,	63.9,	72.9,	80.9,	87.0,	96.4,	103.7,	109.7,	N/A ,
12 hours	19.4, 26.7,	30.5,	36.3,	40.1,	43.0,	52.6,	63.2,	70.2,	79.9,	88.5,	95.1,	105.2,	113.0,	119.4,	N/A ,
18 hours	22.8, 31.2,	35.6,	42.0,	46.4,	49.7,	60.4,	72.4,	80.2,	91.0,	100.5,	107.8,	119.0,	127.6,	134.7,	N/A ,
24 hours	25.6, 34.8,	39.6,	46.7,	51.4,	55.0,	66.7,	79.7,	88.1,	99.7,	110.0,	117.8,	129.9,	139.1,	146.7,	173.0,
2 days	32.0, 42.5,	47.9,	55.7,	60.9,	64.9,	77.5,	91.3,	100.1,	112.3,	122.9,	131.0,	143.3,	152.7,	160.4,	186.8,
3 days	37.2, 48.7,	54.6,	63.1,	68.6,	72.9,	86.3,	100.8,	110.1,	122.9,	133.9,	142.3,	155.0,	164.6,	172.5,	199.4,
4 days	41.8, 54.2,	60.4,	69.5,	75.4,	79.9,	94.0,	109.2,	118.9,	132.2,	143.6,	152.2,	165.3,	175.2,	183.2,	210.7,
6 days	49.9, 63.7,	70.7,	80.7,	87.2,	92.1,	107.4,	123.9,	134.2,	148.3,	160.5,	169.6,	183.3,	193.7,	202.2,	230.8,
8 days	57.0, 72.2,	79.7,	90.5,	97.5,	102.8,	119.2,	136.6,	147.6,	162.5,	175.2,	184.8,	199.1,	210.0,	218.7,	248.4,
10 days	63.6, 79.9,	88.0,	99.5,	106.9,	112.5,	129.8,	148.2,	159.7,	175.3,	188.6,	198.5,	213.4,	224.6,	233.7,	264.4,
12 days	69.8, 87.1,	95.7,	107.8,	115.6,	121.5,	139.7,	158.9,	170.9,	187.1,	200.9,	211.2,	226.6,	238.2,	247.6,	279.1,
16 days	81.3, 100.5,	109.9,	123.2,	131.7,	138.1,	157.9,	178.5,	191.4,	208.7,	223.4,	234.4,	250.7,	262.9,	272.8,	305.9,
20 days	91.9, 112.8,	123.0,	137.3,	146.5,	153.3,	174.4,	196.4,	210.1,	228.4,	243.8,	255.4,	272.5,	285.3,	295.7,	330.2,
25 days	104.5, 127.3,	138.3,	153.8,	163.7,	171.0,	193.6,	217.1,	231.6,	251.0,	267.3,	279.5,	297.6,	311.0,	321.9,	358.0,
NOTES:															

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

Appendix G – Surface Water Network Calculations

AECOM		Page 1							
Midpoint	Sandyford SHD,								
Alencon Link	Carmanhall Road, Sandyford								
Basingstoke, RG21 7PP	Dublin 18.	Micro							
Date 17/02/2021 15:10	Designed by Dara Magee								
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell	Drainage							
Innovyze	Network 2020.1								
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm									
Pipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - Scotland and Ireland									
Return Period (years)	100 PIM	1P (%) 100							
M5-60 (mm)	17.800 Add Flow / Climate Chang	je (%) 0							
Ratio R	0.275 Minimum Backdrop Heigh								

Maximum Rainfall (mm/hr)50Maximum Backdrop Height (m) 0.000Maximum Time of Concentration (mins)30 Min Design Depth for Optimisation (m) 1.200Foul Sewage (l/s/ha)0.000Min Vel for Auto Design only (m/s) 1.00Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	7.508	0.038	197.6	0.022	5.00	0.0	0.600	0	225	Pipe/Conduit	æ
S1.001	11.942	0.060	199.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	5
S1.002	24.199	0.121	200.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	f
S2.000	18.420	0.092	200.2	0.000	5.00	0.0	0.600	0	225	Pipe/Conduit	.
S1.003	25.924	0.130	200.0	0.205	0.00	0.0	0.600	0	225	Pipe/Conduit	6
S3.000	20.028	0.100	200.3	0.199	5.00	0.0	0.600	0	225	Pipe/Conduit	f
S1.004	12.362	0.062	200.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	. 6
S1.005	11.747	0.059	200.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	್

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
S1.000	50.00	5.14	82.185	0.022	0.0	0.0	0.0	0.93	36.8	3.0	
S1.001	50.00	5.35	82.147	0.022	0.0	0.0	0.0	0.92	36.7	3.0	
S1.002	50.00	5.79	82.087	0.022	0.0	0.0	0.0	0.92	36.6	3.0	
S2.000	50.00	5.33	82.058	0.000	0.0	0.0	0.0	0.92	36.6	0.0	
S1.003	50.00	6.26	81.966	0.228	0.0	0.0	0.0	0.92	36.6	30.8	
S3.000	50.00	5.36	81.937	0.199	0.0	0.0	0.0	0.92	36.6	26.9	
S1.004	50.00	6.44	81.761	0.426	0.0	0.0	0.0	1.11	78.3	57.7	
S1.005	50.00	6.62	81.700	0.426	0.0	0.0	0.0	1.11	78.3	57.7	
				©1982-2	020 Innov	yze					

ECOM											Pag	e 2
Iidpoin	t				Sa	Sandyford SHD,						
lencon	Link				Ca	rmanhall 1	Road,	Sand	lyfo	rd		
Basings	toke,	RG21	7PP		Du	blin 18.					Mi	cro
Date 17	/02/20	21 15	:10		De	signed by	Dara	Mage	e			
File Sa	ndyfor	d SHD) Stag	e 3.MI	X Ch	ecked by 1	Brend	an M:	itche	ell	DIC	ainac
Innovyz	е				Ne	twork 202	0.1					
			N	letwork	C Desi	gn Table	for S	torm				
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section	Туре	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Desigr
												_
S4.000		0.045		0.000	5.00		0.600	0		Pipe/Com		đ
S4.001	8.681	0.043		0.000 0.109	0.00		0.600	0		Pipe/Con Pipe/Con		<u>ි</u>
54.002	11.488	0.046	250.0	0.109	0.00	0.0	0.600	0	225	PIPe/Co	aurc	
	18.117			0.000	0.00	0.0	0.600	0	300	Pipe/Co	nduit	5
S1.007	18.015	0.060	300.3	0.114	0.00	0.0	0.600	0	375	Pipe/Co	nduit	5
S5.000	11.386	0.057	199.8	0.008	5.00	0.0	0.600	0	225	Pipe/Co	nduit	ĉ
C1 000	R 000	0 000	200 0	0 000	0 00	0.0	0 600		285	D ' (G		-
	7.936 20.647			0.020	0.00		0.600	0		Pipe/Con Pipe/Con		di se
51.009	20.047	0.103	200.5	0.000	0.00	0.0	0.000	0	225	Pipe/Co	lauic	đ
S6.000	85.740	1.500	57.2	0.000	5.00	0.0	0.600	0	225	Pipe/Co	nduit	3
S6.001	79.572	2.203	36.1	0.000	0.00	0.0	0.600	0	225	Pipe/Co	nduit	ீ
S1.010	7.611	0.038	200.0	0.000	0.00	0.0	0.600	0	225	Pipe/Co	nduit	,f
S1.011	16.271	0.081	200.0	0.000	0.00	0.0	0.600	0	225	Pipe/Co	nduit	<u> </u>
					-	_						
				Ne	twork	Results 1	ab⊥e					
PN	Ra:	in T	.с. т	JS/IL Σ	I.Area	Σ Base	Foul	Add 1	Flow	Vel C	ap 1	Flow
r N			ins)	(m)	(ha)	Flow (1/s)				(m/s) (1	-	

S4.000	50.00	5.16 <mark>81.850</mark>	0.000	0.0	0.0	0.0	0.92	36.6	0.0
S4.001	50.00	5.32 81.805	0.000	0.0	0.0	0.0	0.92	36.6	0.0
S4.002	50.00	5.55 81.762	0.109	0.0	0.0	0.0	0.82	32.7	14.7
S1.006	50.00	6.91 81.641	0.535	0.0	0.0	0.0	1.03	73.0	72.4
S1.007	50.00	7.20 81.487	0.649	0.0	0.0	0.0	1.04	114.9	87.9
S5.000	50.00	5.21 <mark>81.634</mark>	0.008	0.0	0.0	0.0	0.92	36.6	1.1
S1.008	50.00	7.33 81.427	0.677	0.0	0.0	0.0	1.04	115.0	91.7
S1.009	50.00	5.37 81.400	0.000	4.9	0.0	0.0	0.92	36.6	4.9
S6.000	50.00	5.82 85.000	0.000	0.0	0.0	0.0	1.73	68.9	0.0
S6.000	50.00	6.43 83.500	0.000	0.0	0.0	0.0	2.18	86.8	0.0
50.001	50.00	0.45 05.500	0.000	0.0	0.0	0.0	2.10	00.0	0.0
S1.010	50.00	6.57 81.297	0.000	4.9	0.0	0.0	0.92	36.6	4.9
S1.011	50.00	6.86 81.259	0.000	4.9	0.0	0.0	0.92	36.6	4.9

©1982-2020 Innovyze

AECOM		Page 3
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	
Date 17/02/2021 15:10	Designed by Dara Magee	Micro
		Drainage
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell Network 2020.1	
Innovyze	Network 2020.1	
	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm)	
	(m)	
S1.011 S	83.980 81.178 81.175 0 0	
Simulati	on Criteria for Storm	
Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s) Number of Input Hydrog Number of Online Con	0 Inlet Coeffiecie 0 Flow per Person per Day (l/per/da 0.500 Run Time (min	ge 2.000 mt 0.800 y) 0.000 s) 60
Synthet	cic Rainfall Details	
<u></u>		
Rainfall Model	FSR Profile Type Su	ummer
Return Period (years)	and and Ireland Cv (Summer) Cv (Summer) Cv (Winter) Cv (Winter)	
M5-60 (mm) Ratio R	and and Ireland Cv (Winter) (17.800 Storm Duration (mins) 0.275	
©19	82-2020 Innovyze	

AECOM							Page 4	
Midpoint			Sandyfo					
Alencon Link			Carmanh	all Road	, Sandyfo	rd		
Basingstoke, F	RG21 7PP		Dublin	18.			Micro	
Date 17/02/202	21 15:10		Designe	d by Dar	a Magee			
Tile Sandyford	l SHD Sta	age 3.MDX	Checked	by Bren	dan Mitch	ell	Drair	ldy
Innovyze			Network	2020.1				
		Online	e Controls	s for Sto	orm			
Hydro-Brał	ke® Optin	num Manho	ole: S16,	DS/PN: S	1.009, Vc	olume (n	n³): 4.	8
		Un	it Reference	MD-SHE-0(87-4900-23	55-4900		
		Des	ign Head (m)		2.355		
		Desig	n Flow (l/s			4.9		
			Flush-Flo			culated		
			Application		upstream s	storage Surface		
		Su	mp Available			Yes		
			iameter (mm)	,		87		
-	dada a i		rt Level (m	,		81.400		
Ν		-	iameter (mm iameter (mm			100 1200		
Control Poi	nts I	Head (m) Fl	Low (1/s)	Contro	Points	Head	(m) Flow	(1/
Design Point (Cal	culated)	2.355	4.9		Kick-Fl	.o® 0.	779	2
								2
Fl The hydrologica Hydro-Brake® Op Hydro-Brake Opt	timum as s	specified.	been based of Should anot	ther type o	l/Discharge of control c	relation device ot	her than	the
The hydrologica Hydro-Brake® Op	al calculat otimum as s imum® be u	tions have specified.	been based of Should anot en these sto	on the Head ther type o orage routi	l/Discharge of control c ng calculat	relation device ot tions wil	her than l be	the a
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flo	ul calculat otimum as s imum® be u w (1/s) De	tions have specified. tilised th epth (m) Fl	been based of Should anot en these sto Low (l/s) De	on the Head ther type o prage routi epth (m) Fl	l/Discharge of control of ng calculat ow (l/s)	relation device ot tions wil	her than l be Flow (1/	the a
The hydrologica Hydro-Brake® Og Hydro-Brake Opt invalidated	al calculat otimum as s imum® be u	tions have specified.	been based of Should anot en these sto	on the Head ther type o orage routi	l/Discharge of control c ng calculat	relation device ot tions wil	her than l be Flow (1/ 8	the a
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flo 0.100	ul calculat otimum as s timum® be u ww (1/s) De 2.7	tions have specified. utilised th epth (m) Fl 1.200	been based of Should anot en these sto Low (1/s) De 3.6	on the Head ther type o prage routi epth (m) Fl 3.000	l/Discharge of control of ng calculat ow (1/s) De 5.5	relation device ot tions wil epth (m) 7.000	her than 1 be Flow (1/ 8 8 8 8	the a (s) 3.2 3.5 3.7
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flo 0.100 0.200 0.300 0.400	al calculat ttimum as s timum® be u w (1/s) De 2.7 3.4 3.6 3.7	tions have specified. utilised th epth (m) Fl 1.200 1.400 1.600 1.800	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500	I/Discharge of control of ng calculat ow (1/s) Do 5.5 5.9 6.3 6.6	relation device ot tions wil 7.000 7.500 8.000 8.500	her than 1 be Flow (1/ 8 8 8 8 9	the a (s) 3.2 3.5 3.7 0.0
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500	al calculat otimum as a cimum® be u w (1/s) De 2.7 3.4 3.6 3.7 3.6	tions have specified. utilised th .200 1.200 1.400 1.600 1.800 2.000	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600	al calculat ttimum as s timum® be u w (1/s) De 2.7 3.4 3.6 3.7	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500	I/Discharge of control of ng calculat ow (1/s) Do 5.5 5.9 6.3 6.6	relation device ot tions wil 7.000 7.500 8.000 8.500	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500	al calculat ttimum as s timum® be u w (1/s) De 2.7 3.4 3.6 3.7 3.6 3.5	tions have specified. utilised th .200 1.200 1.400 1.600 1.800 2.000	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	a (s) 3.2 3.5 3.7 9.0 9.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculat ttimum as s timum® be u 2.7 3.4 3.6 3.7 3.6 3.5 3.0	tions have specified. utilised th 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based of Should anot en these sto Low (1/s) De 3.6 3.8 4.1 4.3 4.5 4.7 4.9	on the Head ther type of prage routi apth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>I/Discharge of control of ng calculat ow (1/s) De 5.5 5.9 6.3 6.6 7.0 7.3 7.6</pre>	relation device ot tions wil 7.000 7.500 8.000 8.500 9.000	her than 1 be Flow (1/ 8 8 8 8 9 9 9	the a (s) 3.2 3.5 3.7 0.0 0.2

AECOM		Page 5
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Micco
Date 17/02/2021 15:10	Designed by Dara Magee	
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell	Drainage
Innovyze	Network 2020.1	
Cellular Storage Inver Infiltration Coefficient Infiltration Coefficient		0.55
Infiltration Coefficient Infiltration Coefficient	rt Level (m) 81.734 Safety Factor Base (m/hr) 0.00000 Porosity Side (m/hr) 0.00000 ea (m ²) Depth (m) Area (m ²) Inf. As	0.55
0.000 126.5 2.055 126.5	0.0 2.056 0.0	0.0

AECOM										Pag	еб			
Aidpoir	nt				S	andyf	ord SH	ID,						
lencor						-		all Road, Sandyford						
Basings			01 7pc)										
Date 17	-							Dara Mac	100					
							-	-	·	Dra	ainag			
File Sa		ora s	SHD St	age 3.			-	Brendan M	litchell		_			
Innovyz	ze				N	etwor	k 2020).1						
<u>S</u>	ummar	y of	Crit	ical R			aximum Criteri	Level (Rank 1)	for Sto:	rm			
		Area	l Redu	ction Fa				nal Flow -	% of Total	l Flow 0.0	000			
			Hot :	Start (m	nins)	0	MADI) Factor *	10m³/ha St	corage 2.0	000			
				t Level	. ,	0			let Coeffie					
							ow per I	Person per	Day (l/pei	r/day) 0.0	000			
	FOUL S	ewage	e per n	ectare	1/s) 0.0	500								
		N	umber c	f Onlin	e Contro	ls 1 N	umber o	f Storage f Time/Are f Real Tim	a Diagrams	0				
					Syntheti	.c Rain	fall De	tails						
			Rainfa	ll Model			FSR		R 0.275					
				Regior	n Scotlar	nd and	Ireland	l Cv (Summe	er) 0.750					
			M5	-60 (mm)	1		17.800	Cv (Winte	er) 0.840					
	M	arain	for F	ood Rig	k Warnin	a (mm)				300.0				
	1.10	argin	101 11					cond Incre						
					DTS	Status				OFF				
					DVD	Status				ON				
					Inertia	Status				ON				
			P	rofile(з)				Summer and	d Winter				
		Dur	cation(s) (min				20, 180, 24						
					720,	960, 1	L440, 21	60, 2880,						
	Potu	irn De	ariod(a) (year:	-)), 10080 30, 100				
	Rect			hange (, 20, 20				
PN	US/MH Name	St	torm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)			
Q1 000	01	600	Winter	100		20/15	C11mm				02 020			
S1.000 S1.001			Winter Winter	100 100			Summer Summer				83.832			
S1.001			Winter	100			Winter				83.832			
S1.002			Winter	100		, -	Winter				83.832			
S1.003			Winter	100	+20%	1/120	Winter				83.832			
S3.000	S6	600	Winter	100	+20%	1/120	Summer				83.831			
S1.004			Winter	100	+20%		Winter				83.828			
S1.005			Winter	100	+20%		Summer				83.826			
S4.000			Winter	100	+20%		Summer				83.829			
S4.001 S4.002			Winter Winter	100 100	+20% +20%		Winter Summer				83.828			
S4.002 S1.006			Winter	100	+20%		Summer				83.82			
S1.000			Winter	100	+20%		Summer				83.829			
S5.000			Winter	100	+20%		Summer				83.829			
	S15	600	Winter	100	+20%	1/15	Summer				83.828			
S1.008				100	+20%	1/15	Cummon				83.827			
S1.009		600		100		1/15	Summer							
	S16 S17		Winter Summer	100	+20%	1/15	Summer				85.000			

AECOM		Page 7
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Mirro
Date 17/02/2021 15:10	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell	Diamage
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	1.422	0.000	0.03			0.9	SURCHARGED	
S1.001	S2	1.460	0.000	0.02			0.7	SURCHARGED	
S1.002	S3	1.520	0.000	0.02			0.6	SURCHARGED	
S2.000	S4	1.549	0.000	0.00			0.1	SURCHARGED	
S1.003	S5	1.641	0.000	0.30			10.0	SURCHARGED	
S3.000	S6	1.669	0.000	0.29			9.5	SURCHARGED	
S1.004	S7	1.767	0.000	0.31			19.3	SURCHARGED	
S1.005	S8	1.826	0.000	0.13		652	7.9	SURCHARGED	
S4.000	S9	1.754	0.000	0.01			0.3	SURCHARGED	
S4.001	S10	1.798	0.000	0.02			0.5	SURCHARGED	
S4.002	S11	1.842	0.000	0.17			4.7	SURCHARGED	
S1.006	S12	1.887	0.000	0.16		685	10.0	SURCHARGED	
S1.007	S13	1.967	0.000	0.08			7.8	SURCHARGED	
S5.000	S14	1.970	0.000	0.03			1.0	SURCHARGED	
S1.008	S15	2.026	0.000	0.07			6.0	SURCHARGED	
S1.009	S16	2.201	0.000	0.15			5.0	SURCHARGED	
S6.000	S17	-0.225	0.000	0.00			0.0	OK	

AECOM		Page 8
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Micro
Date 17/02/2021 15:10	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell	Diamage
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Storm			First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S6.001	S18	15 Summer	1	+20%					83.500
S1.010	S19	600 Winter	100	+20%					81.359
S1.011	S20	600 Winter	100	+20%					81.317

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded	
S6.001 S1.010 S1.011	S18 S19 S20	-0.225 -0.163 -0.167	0.000 0.000 0.000	0.00 0.17 0.15			0.0 5.0 5.0	OK OK		

AECOM		Page 1
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Micro
Date 17/02/2021 14:46	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell	Diamage
Innovyze	Network 2020.1	1

MH Name	S15	S13	S12			S5	S S3			
Hor Scale 1500		5.000		4.002		3.000	2.000			
Ver Scale 200	ľ		<u> </u>							
Datum (m)78.000										
PN		S1.007	S1.006			S1.003	S1.002			
Dia (mm)		375	300			225	225			
Slope (1:X)		300.3	230.0			200.0	200.0			
Cover Level (m)	84.300	84.450	84.450	84.400	84.400	84.400	84.440	84.410	84.360	
Invert Level (m)		81.427 81.487	81.562 81.641	81.641 81.700	81.700 81.761	81.836 81.966	81.966 82.087	82.087 82.147	82.185	
Length (m)		18.015	18.117			25.924	24.199			

MH Name	S			S16				
Hor Scale 1500				6.001		5.000		
Ver Scale 200						11		
Datum (m)78.000								
PN				S1.009				
Dia (mm)				225				
Slope (1:X)				200.5				
Cover Level (m)	83.980	84.120	84.150	84.270	84.300			
Invert Level (m)		81.178 81.259	81.297	81.297 81.400	81.427			
Length (m)				20.647				
©1982-2020 Innovyze								

AECOM		Page 2
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Mirro
Date 17/02/2021 14:46	Designed by Dara Magee	Dcainago
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell	Drainage
Innovyze	Network 2020.1	

MH Name	S5 S	4
Hor Scale 1500 Ver Scale 200	1.002	
Datum (m)79.000		
PN	S2.000	
Dia (mm)	225	
Slope (1:X)	200.2	
Cover Level (m)	84.400 84.400 84.400	•
Invert Level (m)	81.966 0.58	
Length (m)	18.420	

MH Name	S7	S6	
Hor Scale 1500 Ver Scale 200		1.003	
Datum (m)78.000 PN		S3.000	
Dia (mm)		225	
Slope (1:X)		200.3	
Cover Level (m)	84.400	84.400	
Invert Level (m)		81.837 81.937	
Length (m)		20.028	
- • •	©1982-2020 Innc		

AECOM		Page 3
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Micro
Date 17/02/2021 14:46	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell	Diamage
Innovyze	Network 2020.1	

MH Name	S12				
Hor Scale 1500	1	.005			
Ver Scale 200	III III III III III III III III III II			1	Ι
Datum (m)78.000					
Dia (mm)					
Slope (1:X)					
Cover Level (m)	84.450	84.470	84.500	84.450	
Invert Level (m)		81.762 81.762	81.805	81.850	
Length (m)					

MH Name	S15	
Hor Scale 1500 Ver Scale 200	1.00	7
Datum (m)78.000 PN		
Dia (mm)		
Slope (1:X)		
Cover Level (m)	84.300 84.3350	
Invert Level (m)	81.577 81.634	

©1982-2020 Innovyze

AECOM		Page 4
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Micro
Date 17/02/2021 14:46	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3.MDX	Checked by Brendan Mitchell	Drainage
Innovyze	Network 2020.1	-

MH Name	S18	S17	
Hor Scale 1500 Ver Scale 200			
Datum (m)80.000		S6.000	
Dia (mm)		225	
Slope (1:X)		57.2	
Cover Level (m)	84.950	86.500	
Invert Level (m)	83.500	82.000	
Length (m)		85.740	

MH Name	S19		518
Hor Scale 1500 Ver Scale 200		1.009	
Datum (m)79.000			
PN		S6.001	
Dia (mm)		225	
Slope (1:X)		36.1	
Cover Level (m)	84.150		84.950
Invert Level (m)		81.297	83.500
Length (m)		79.572	

Appendix H – Bauder XF301 Sedum System & Bauder DSE60 Drainage Layer

Revision: January 2018

BAUDER

PRODUCT DATASHEET

Bauder XF301 Sedum System

Single layer, light weight, Sedum System.

Intended Use

Bauder XF301 Single Layer Sedum System is an ultra-light weight sedum system. The product can be laid directly onto the waterproofing without the need for a growing medium. XF301 also contains a moisture mat which retains up to 5 Ltr of water/m2. The vegetation is a mix of in excess of 14 sedum varieties.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE				
Characteristic	Unit	XF300 Sedum Blanket		
Maximum Saturated Weight	Kg/m²	≤44		
Thickness	mm	34 - 44		
Sedum and Saxifrage Species	Nos	14 - 17 species		
pH Value		6.5 - 7		
Typical Supply Size	m	1 x 2		
Sedum Species	14+	The species mix is adjusted from time to time. Please contact Bauder Technical for further information		
Long Rolls (for use with crane attachment)	m	5 to 10m		
Material		Substrate and sedum plants, embedded in a nylon mesh, with a moisture retention fleece		

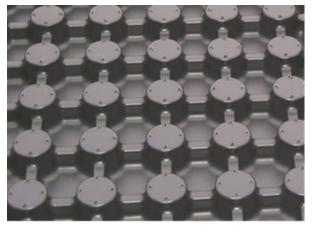
IRELAND

Bauder Ltd O'Duffy Centre, Carrickmacross, Co. Monaghan T: +353 (0)42 9692 333 E: <u>info@bauder.ie</u> W: <u>bauder.ie</u>

CERTIFICATION AND ENVIRONMENTAL INFORMATION		
International Standards Organisation	ISO 9001:2015 Quality Management	
(ISO)	Certificates EN1271 (UK) and 70499/03-15_e (Germany).	
	ISO 14001:2015 Environmental Management	
	Certificates A10552 (UK) and 70499/03-15_d (Germany).	
	ISO 50001: 2011 Energy Management	
	Certificate 70499/03-15_c	
BS 476 Part 3: 2004	Ext. F. AA Ext. S. AA	
Recycled content	≥ 80% recycled material	

INSTALLATION GUIDANCE

Normally installed directly onto the waterproofing or on flat roofs onto SDF mat. Care should be taken not to traffic the sedum. XF301 should be layed by skilled operative. See Bauder's Green Roof Installation Guide for full details.


IRELAND

BAUDER

PRODUCT DATA SHEET

Bauder DSE60 Drainage and Protection Layer

HDPE Water storage and multi-directional drainage layer. Used on roofs below 5° pitch.

Intended Use

Provides a pressure resistant stable base for high loads or support for roof mounted equipment without compression to the drainage capacity. If DSE60 is filled with Bauder Mineral Drain, it provides a robust temporary finish able to accept site traffic, including vehicles.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE				
Characteristic	Test method	Unit	Value	
Weight (dry)	EN 1848-1	Kg/m²	2	
Weight (filled with mineral drain)		Kg/m²	51.9	
Depth		mm	60	
Capacity		l/m²	33	
Water storage capacity		l/m²	17	
Water Storage (when filled with mineral drain)		l/m²	10-12	
Material			High density polyethylene	
Board Size		m	0.975 x 1.975 (1.93 m ²)	
Coverage		m²	1.9	

CERTIFICATION AND ENVIRONMENTAL INFORMATION		
International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany).	
	ISO 14001:2015 Environmental Management Certificates A10552 (UK) and 70499/03-15_d (Germany).	
	ISO 50001: 2011 Energy Management Certificate 70499/03-15_c (Germany)	
Recycled content	100% recycled high density polyethylene	

INSTALLATION GUIDANCE

Normally installed over a protection layer, sheets are laid open cels down (as above) over entire areas. Butt up each sheet overlaping the lips. See Bauder's Green Roof Installation Guide for full details.

Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting our Technical Department at <u>technical@bauder.co.uk</u>

Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM

Bauder Ltd		
70 Landseer Road, Ipsw	rich, Suffolk IP3 0DH	
T: +44 (0)1473 257671	E: info@bauder.co.uk	W: bauder.co.uk

IRELAND

Bauder Ltd O'Duffy Centre, Carrickmacross, Co. Monaghan T: +353 (0)42 9692 333 E: <u>info@bauder.ie</u> W: <u>bauder.ie</u>

Appendix I – Stormtech Tank Details

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO	

MC-4500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-4500. 1.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) 3. CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD 4 IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE 5 THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: 7
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING. CHAMBERS SHALL HAVE INTEGRAL. INTERLOCKING ٠ STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3"
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, A) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN., B) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLOURS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8 ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD. THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

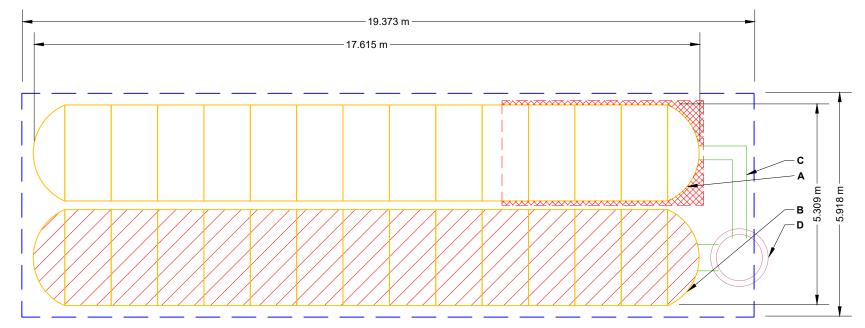
IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-4500 CHAMBER SYSTEM

- STORMTECH MC-4500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS. 3 STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUB-GRADE. BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5 JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- MAINTAIN MINIMUM 9" (230 mm) SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 7.
- 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 3/4" AND 2" (20-50 mm).
- STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS AS TO NOT DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER DIFFER 9. BY MORE THAN 12" (300 mm) BETWEEN ADJACENT CHAMBER ROWS.
- STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 10
- 11. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIAL BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- 12. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUB-SURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1
- 2. THE USE OF EQUIPMENT OVER MC-4500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- FULL 36" (900 mm) OF STABILISED OVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. 3

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY


CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

- WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".

ISOLATOR ROW PLUS COMPONENTS SHOWN ON THIS DESIGN MAY NOT BE AVAILABLE IN THE SPECIFIED PROJECT REGION. PLEASE CONTACT YOUR LOCAL ADS REPRESENTATIVE OR E-MAIL ADSINTERNATIONAL@ADS-PIPE.COM FOR FURTHER INFORMATION

	PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS				
26	STORMTECH MC-4500 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	3.886	PART TYPE	ITEM ON	
4	STORMTECH MC-4500 END CAPS	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	2.515			300 mm TOP PARTIAL CUT END CAP, PART#: MC4500IEPP12T / TYP
<u>305</u> 229	STONE ABOVE (mm) STONE BELOW (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC): MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):	2.362	PREFABRICATED END CAP	A	CONNECTIONS
40	STONE VOID	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):		PREFABRICATED END CAP	т к	600 mm BOTTOM PARTIAL CUT END CAP, PART#: MC4500IEPP24B / ICONNECTIONS AND ISOLATOR PLUS ROWS
	INSTALLED SYSTEM VOLUME (m [°]) (PERIMETER STONE INCLUDED)	TOP OF STONE:	2.057	MANIFOLD		300 mm x 300 mm TOP MANIFOLD. ADS N-12
144.1	(COVER STONE INCLUDED)	TOP OF MC-4500 CHAMBER: 300 mm x 300 mm TOP MANIFOLD INVERT:	1.13	CONCRETE STRUCTURE	D	(DESIGN BY ENGINEER / PROVIDED BY OTHERS)
	(BASE STONE INCLUDED)	600 mm ISOLATOR ROW PLUS INVERT:	0.286			
	SYSTEM AREA (m ⁻)	BOTTOM OF MC-4500 CHAMBER:	0.229	-		
50.6	SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000			

PLACE MINIMUM 5.334 m OF ADSPLUS175 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

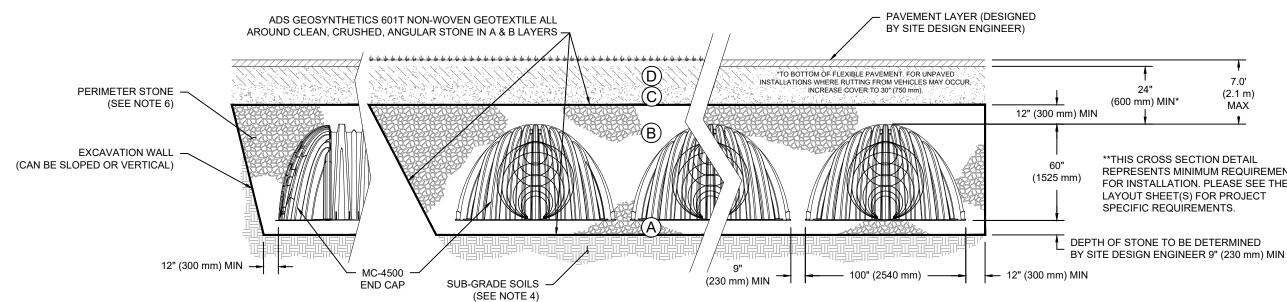
MOTES
 MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
 DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COMPONENTS IN THE FIELD.
 THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUI THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINE THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR PROVIDED.
 MOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE

BED LIMITS

INVERT ABOVE BASE OF CHAMBER NEW YORK INVERT MAX FLOW MAX FLOW 30 TYP OF ALL 800 mm BOTTOM 30 TY								1
OR DECREASED ONCE THIS INFORMATION IS	*INVERTAB							IMATE
OR DECREASED ONCE THIS INFORMATION IS	P OF ALL 300 mm TOP							1E ULT
OR DECREASED ONCE THIS INFORMATION IS	3 / TYP OF ALL 600 mm BOTTOM					Σ	N/A	IT IS T
OR DECREASED ONCE THIS INFORMATION IS				SHI	AND	N: N: D	KED	CTION.
OR DECREASED ONCE THIS INFORMATION IS		307 mm	70 L/s IN	RD	SEL 2	RAV	LEO E	STRUC
OR DECREASED ONCE THIS INFORMATION IS				ĥ	л Т			0 000
OR DECREASED ONCE THIS INFORMATION IS				ģ	JBLI			RIOR T
OR DECREASED ONCE THIS INFORMATION IS				SAN	Б	020		VING P
OR DECREASED ONCE THIS INFORMATION IS						2/7/2(;; ₩	S DRAV
OR DECREASED ONCE THIS INFORMATION IS						Ц Ц	DIEC	W THIS
OR DECREASED ONCE THIS INFORMATION IS						DAT	PRO	REVIE
OR DECREASED ONCE THIS INFORMATION IS								SHALI
OR DECREASED ONCE THIS INFORMATION IS								GINEER VTS.
OR DECREASED ONCE THIS INFORMATION IS				NOL				GN ENC
OR DECREASED ONCE THIS INFORMATION IS				RIPT				E DESIG
OR DECREASED ONCE THIS INFORMATION IS				DESC				HE SITE
OR DECREASED ONCE THIS INFORMATION IS								ND PR
OR DECREASED ONCE THIS INFORMATION IS								SENTA ONS, A
OR DECREASED ONCE THIS INFORMATION IS				×	++			REPRE:
OR DECREASED ONCE THIS INFORMATION IS								NECT F VS, REC
OR DECREASED ONCE THIS INFORMATION IS				DRW				ER PRC
OR DECREASED ONCE THIS INFORMATION IS								R OTHI PLICAE
OR DECREASED ONCE THIS INFORMATION IS				2				HLAP
OR DECREASED ONCE THIS INFORMATION IS							2MO	ENGIN
OR DECREASED ONCE THIS INFORMATION IS					Ś	r Quality	- 0606 ECH.C	ESIGN
OR DECREASED ONCE THIS INFORMATION IS					29	on•Wate	LL CT TORMT	SITE D
OR DECREASED ONCE THIS INFORMATION IS				2		n•Retenti	CKY HI	PF THE SOCIA
OR DECREASED ONCE THIS INFORMATION IS					ŗ	Detentior	E RO	TION O
OR DECREASED ONCE THIS INFORMATION IS					Ľ		AVENU -892-26	DIREC
OR DECREASED ONCE THIS INFORMATION IS					C		WELL ,	R THE PICTEE
OR DECREASED ONCE THIS INFORMATION IS					4		0 CRON	UNDE (S) DEI
OR DECREASED ONCE THIS INFORMATION IS					Vi	J	520 860-5	O ADS
OR DECREASED ONCE THIS INFORMATION IS								HE PR
OR DECREASED ONCE THIS INFORMATION IS				BLVC	3026			N PROV
OR DECREASED ONCE THIS INFORMATION IS				AAN	H 4: 173			NATIOI SURE
OR DECREASED ONCE THIS INFORMATION IS				SUE	33-7 33-7		Ď	INFOR TO EN
OR DECREASED ONCE THIS INFORMATION IS				40 TF	-LIAF		•••	ED ON
OR DECREASED ONCE THIS INFORMATION IS				46				D BAS
OR DECREASED ONCE THIS INFORMATION IS				U			Ш	EPARE
OR DECREASED ONCE THIS INFORMATION IS					20			EN PR
OR DECREASED ONCE THIS INFORMATION IS							3	HAS BE OF TH
OR DECREASED ONCE THIS INFORMATION IS				Ê		0	Ŋ	WING F
OR DECREASED ONCE THIS INFORMATION IS				E	Ë			IS DRAV
							т	HH H H
AGE VOLUME CAN BE ACHIEVED ON SITE.			IS			∽⊏		
	GE VOLUME CAN BE ACHIEVED C	N SITE.			~ (0	,

ACCEPTABLE FILL MATERIALS: STORMTECH MC-4500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPA
П	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUB-BASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUB-GRADE REQUIREMENTS.	N/A	PREPARI INSTALL
	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUB-BASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUB-BASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COM THE CHAMBE 12" (300 mm) WELL GRA
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	
~	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUB-GRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE CO


PLEASE NOTE:

THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 1.

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2

WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3. COMPACTION REQUIREMENTS.

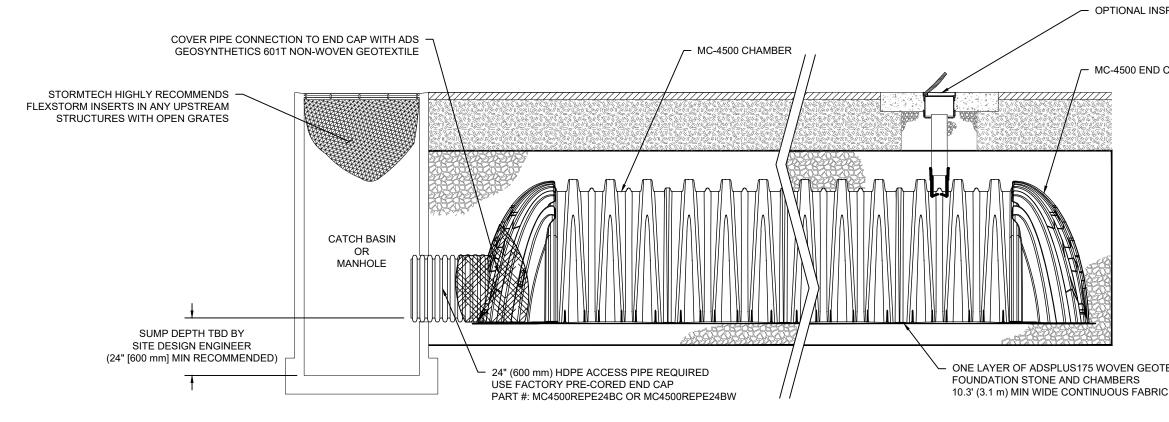
ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUB-BASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 4.

NOTES:

- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101 1.
- 2. MC-4500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS"
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUB-GRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, A) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN., B) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23°, AND C) CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLOURS.

PACTION / DENSITY REQUIREMENT

ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.


MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.

NO COMPACTION REQUIRED.

COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3}

REPRESENTS MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE

Add IntellARD, OH 43026 Hall IRARD, OH 43026 DUBLIN, IRELAND HILLIARD, OH 43026 HILLIARD, OH 43026 DUBLIND HILLIARD,				REV DRW CHK	DESCRIPTION	SANDYE	SANDYFORD SHD
DUBLIN, I DUBLIN, I DUBLIN, I DUBLIN, I Detertion:Reinformation DUBLIN, I Detertion:Reinformation DUBLIN, I Detertion:Reinformation DUBLIN, I Dublin, I DUBLIN, I Dublin, I DUBLIN, I Detertion:Reinformation Dublin, I Sconconvert Arenue Rock HIL I or I 08067 B60-528-0188 B88-892.2584 WWW/STORMTECH.COM PROJECT #:						5	
Determion-Weier Quality Determion-Weier Quality 520 CROMMELL AVENUE ROCKY HILL CT 06067 BATE: 12/7/2020 860-529-8188 888-892.2584 WWW.STORMTECH.COM PROJECT #:	י א	1-800-733-747	070			DUBLIN,	IRELAND
Determion-Note: Cuention-Note: Cuenti	51 (_				
PROJECT #:	₁⊧⊧ ∕₽					DATE: 12/7/2020	DRAWN: DM
PROJECT #:	: ſ						
		_	520 CROMWELL AVENUE ROCKY HILL CI 06067				
	5		860-529-8188 888-892-2694 WWW.STORMTECH.COM				CHECKED: N/A

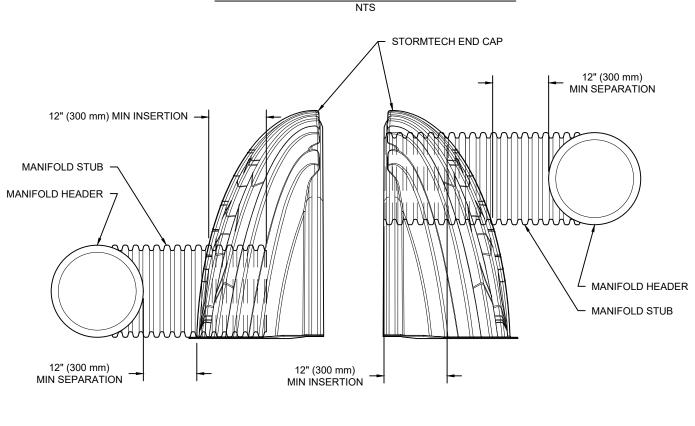
MC-4500 ISOLATOR ROW PLUS DETAIL

NTS

ISOLATOR ROW PLUS COMPONENTS SHOWN ON THIS DESIGN MAY NOT BE AVAILABLE IN THE SPECIFIED PROJECT REGION. PLEASE CONTACT YOUR LOCAL ADS REPR ADSINTERNATIONAL@ADS-PIPE.COM FOR FURTHER INFORMATION

INSPECTION & MAINTENANCE

INSPECT ISOLATOR ROW PLUS FOR SEDIMENT STEP 1)


- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2. i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
- ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS 1. OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH-WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

PECTION PORT CAP TEXTILE BETWEEN CWITHOUT SEAMS RESENTATIVE OR E-MAIL WITHOUT SEAMS RESENTATIVE OR E-MAIL A OF 5 SHEET 4 OF 5 SHEET A OF 5 SHEET	PECTION PORT					TIMATE
SHEET	CAP	NYFORD SHD	LIN, IRELAND	DRAWN: DM	CHECKED: N/A	R TO CONSTRUCTION. IT IS THE UL
SHEET		SAND	DUB	DATE: 12/7/2020	PROJECT #:	HALL REVIEW THIS DRAWING PRIO
SHEET		DESCRIPTION				ive. The site design engineer s Nd project requirements.
SHEET						PRESENTATI LATIONS, AN
SHEET						ROJECT REF AWS, REGU
SHEET	RESENTATIVE OR E-MAIL	RV DRV				DR OTHER PI
SHEET			•	Detention•Retention•Mater Quality	520 CROMWELL AVENUE ROCKY HILL CT 06067 860-529-8188 888-892-2694 WWW.STORMTECH.CO	L IDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN E HE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS M
SHEET		4640 TRUEMAN BLVD	NTTERNATIONAL 1-800-733-7473			HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVID RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE
			S	HEE		

MC-SERIES END CAP INSERTION DETAIL

NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

Magee, Dara

From:	Patrick Gavin < Pat.Gavin@resolutegroup.ie>
Sent:	22 January 2021 14:14
To:	Magee, Dara; Ivan McFadden; Sales
Subject:	[EXTERNAL] RE: Stormtech Sandyford
Attachments:	Stormtech BBA certs.pdf

Hi Dara,

Thanks for your query. In short, yes, as all StormTech arches are rated HGV trafficable once minimum cover levels are achieved. Based on your figures below you will have a minimum of 800mm above the crown of the arch as this allows for the minimum 150mm stone requirement above the SC740 arch, this increases to 300mm minimum for the MC3500.

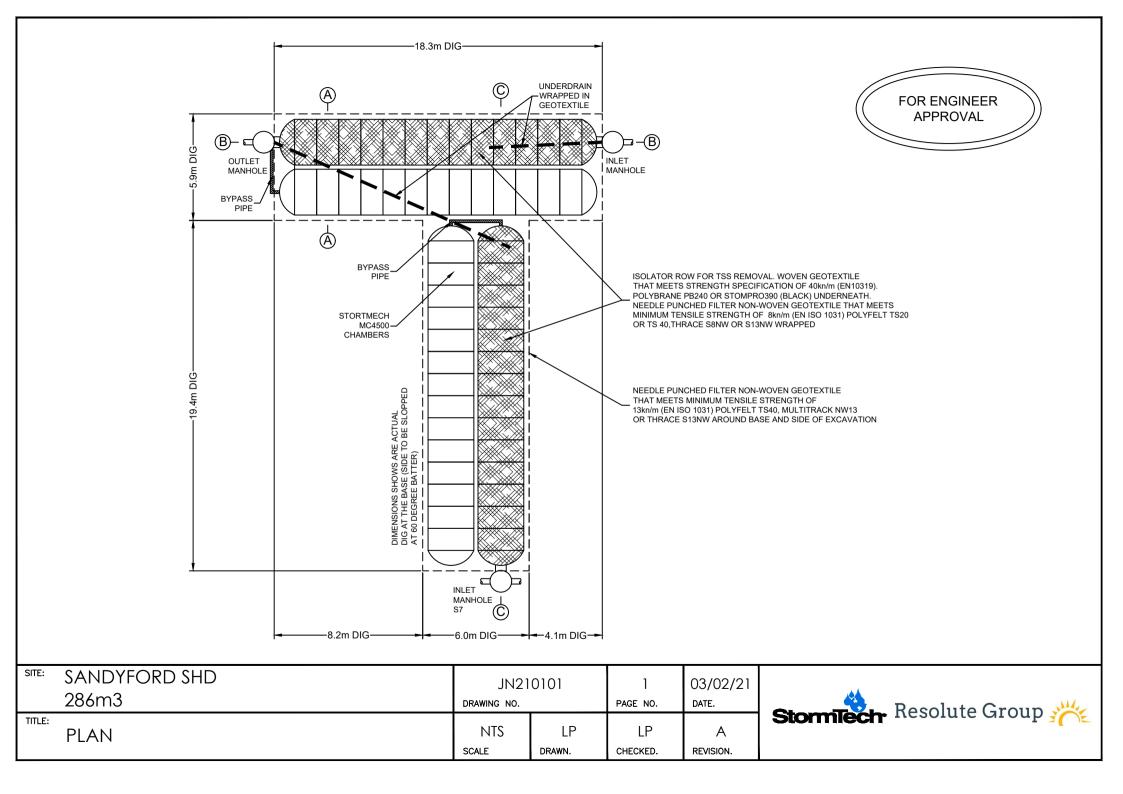
Please see further note below re traffic loading.

Loading:

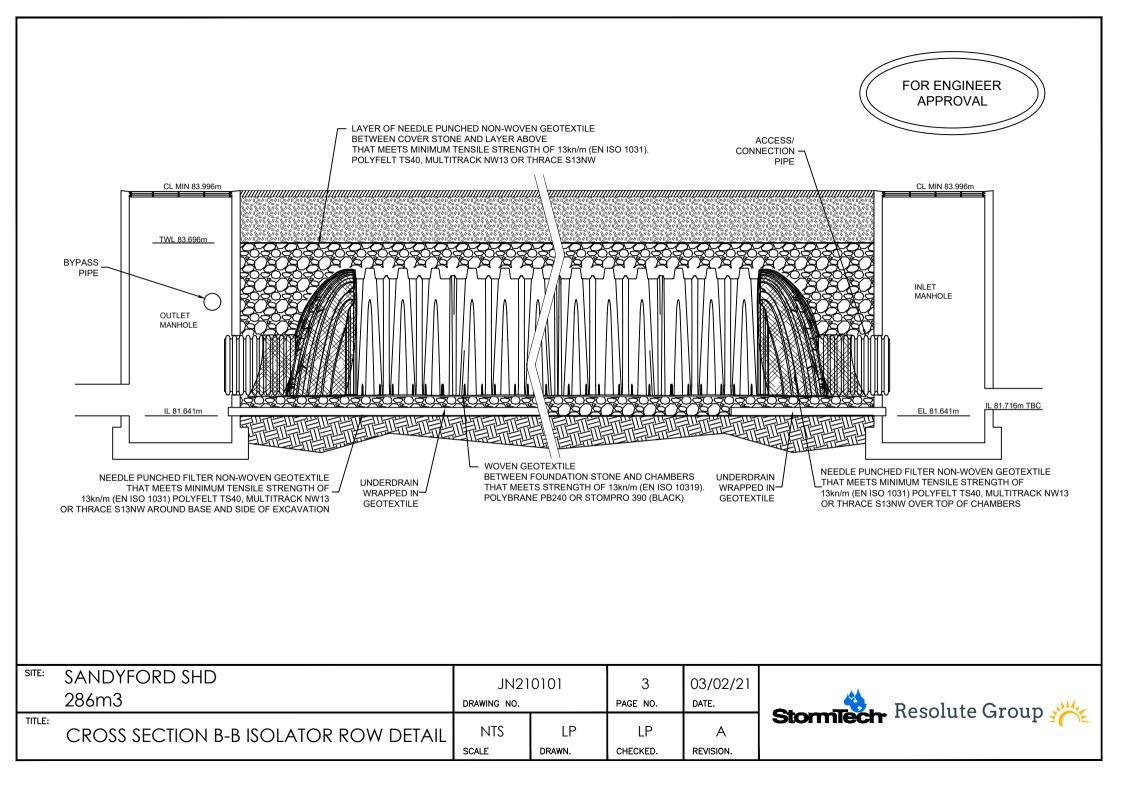
I draw your attention to page 9 and table 5 design values of the StormTech BBA attached. Here loadings are explained in further detail.

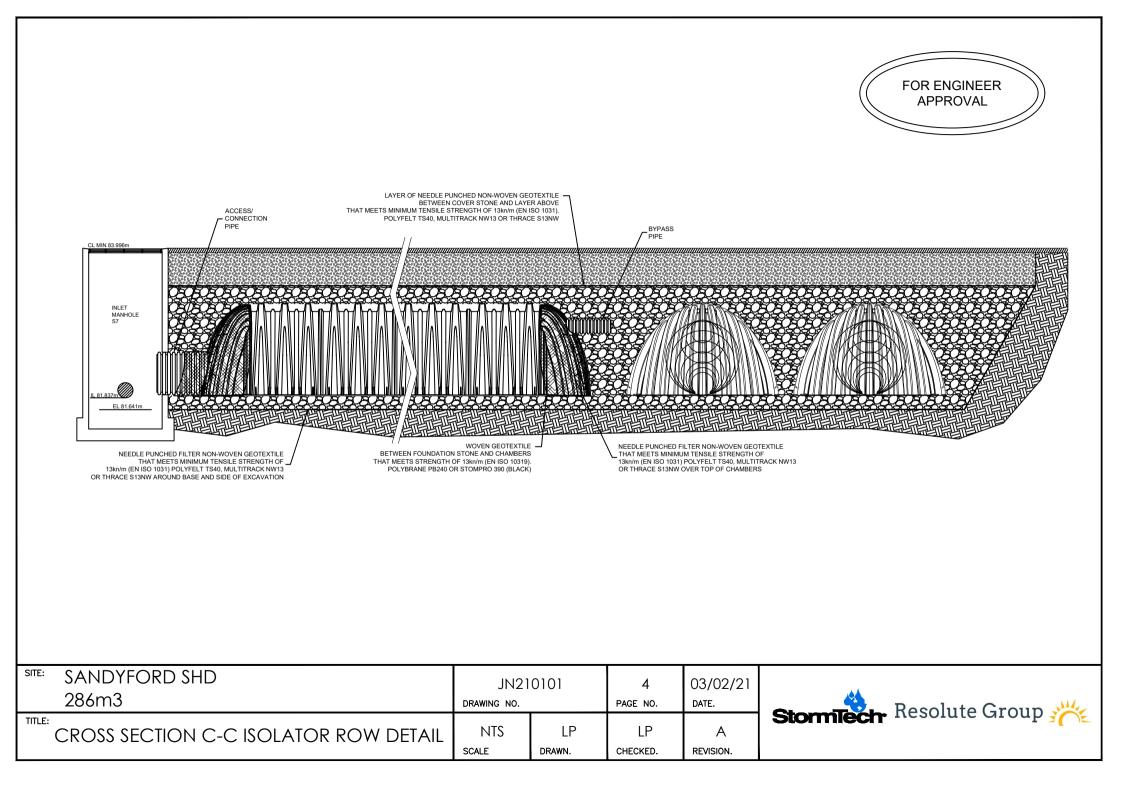
Design load basis case 1 & case 2: (Axles at 1220 mm centres, wheels at 1830 mm centres, in each case tyre contact area = 508 x 254 mm)

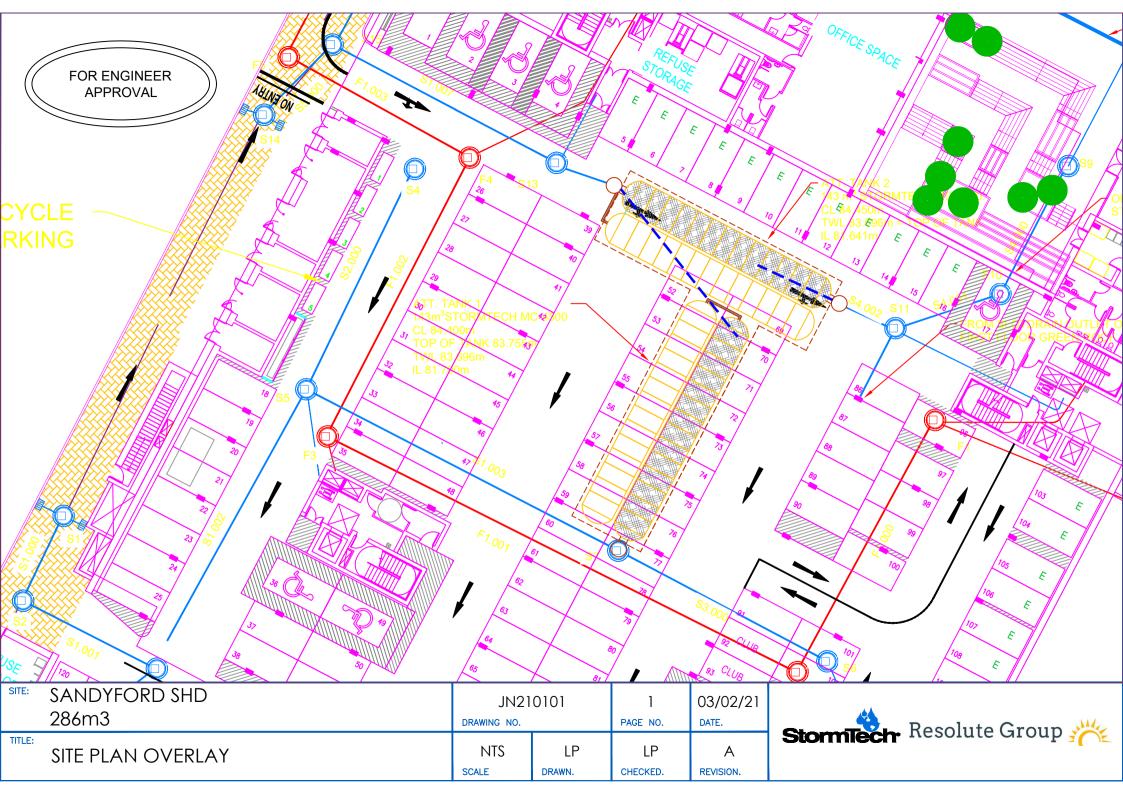
- 142 kilonewton axel load
 - o Factor up 1.27 for dynamic impact
 - Factor up 1.2 for multiple presence
 - Factor up 1.75 as safety factor
- 378 Kilonewton per axel
- Per BBA, based on a wheel size of 508mm * 254mm = 1,472Kilonewtown/m2


Note that above figures are based on the minimum cover requirement of 460mm (crown of the arch to finished surface level for SC740 arch) this increases to 600mm for the MC3500 chamber. If that cover level is greater which is will be, then the live loading capacity increases.


Thanks and Regards


Pat Gavin Project Engineer **Resolute Group**


Resolute Engineering Group Ltd Tel: 01 4853184 Mob: 086 065 7383 Web: resolutegroup.ie


NOTICE: The information transmitted in this e-mail is confidential, and is intended only for the named recipient to which it is addressed. If you are not an authorised recipient of this email, please contact Resolute Group immediately by return email. You are hereby notified that if you are not an authorised recipient the review, dissemination, distribution, transmission, printing or copying, forwarding, or any other use of this message or any part of it, including any attachments, other than the notification of Resolute Eng Group is strictly prohibited and may be unlawful. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late, or incomplete or contain virus. The sender therefore does not accept liability for any errors or omissions in the content of this message, which arise as a result of this email transmission. Subsequent alterations to this electronic message, after its transmission, will be disregarded.

Project reference: PR-461030

Appendix J – SuDS Manual Drainage Maintenance Checklist

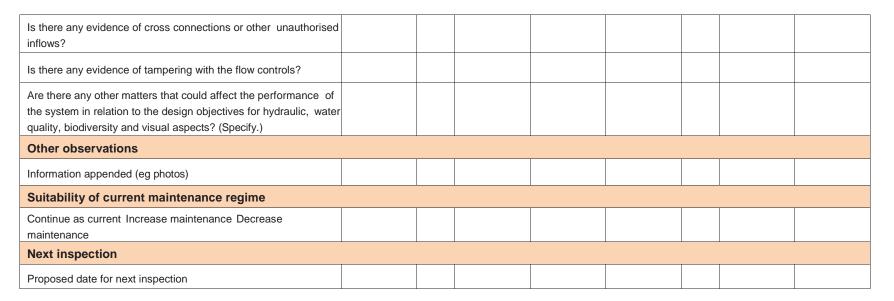
C753 The SuDS Manual

Appendix B: Maintenance inspection checklist

Table B.25 SuDS maintenance inspection checklist					
General information					
Site ID					
Site location and co-ordinates (GIS if appropriate)					
Elements forming the SuDS scheme	Approved drawing reference(s)				
Inspection frequency	Approved specification reference				
Type of development	Specific purpose of any parts of the scheme (eg biodiversity, wildlife and visual aspects)				

Inspection date								
	Details	Y/N	Action required	Date completed	Details	Y/N	Action required	Date Completed
General inspection items					1			
Is there any evidence of erosion, channelling, ponding (where not desirable) or other poor hydraulic performance?								
Is there any evidence of accidental spillages, oils, poor water quality, odours or nuisance insects?								
Have any health and safety risks been identified to either the public or maintenance operatives?								
Is there any deterioration in the surface of permeable or porous surfaces (eg rutting, spreading of blocks or signs of ponding water)?								

C753 The SuDS Manual


Appendix B: Maintenance inspection checklist

Silt/sediment accumulation				
Is there any sediment accumulation at inlets (or other defined accumulation zones such as the surface of filter drains or infiltration basins and within proprietary devices)? If yes, state depth (mm) and extent. Is removal required? If yes, state waste disposal requirements and confirm that all waste management requirements have been complied with (consult environmental regulator)				
Is surface clogging visible (potentially problematic where water has to soak into the underlying construction or ground (eg underdrained swale or infiltration basin)?				
Does permeable or porous surfacing require sweeping to remove silt?				
System blockages and litter build-up				
Is there evidence of litter accumulation in the system? If yes, is this a blockage risk?				
Is there any evidence of any other clogging or blockage of outlets or drainage paths?				
Vegetation				
Is the vegetation condition satisfactory (density, weed growth, coverage etc)? (Check against approved planting regime.)				
Does any part of the system require weeding, pruning or mowing? (Check against maintenance frequency stated in approved design.)				
Is there any evidence of invasive species becoming established? If yes, state action required				
Infrastructure		 	 	
Are any check dams or weirs in good condition?				
Is there evidence of any accidental damage to the system (eg wheel ruts?)				

C753 The SuDS Manual

Appendix B: Maintenance inspection checklist

Appendix K – Irish Water Confirmation of Feasibility

Dara Magee

AECOM Adelphi Plaza George's Street Upper Dun Laoghaire Co. Dublin A96T927

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

14 August 2020

www.water.ie

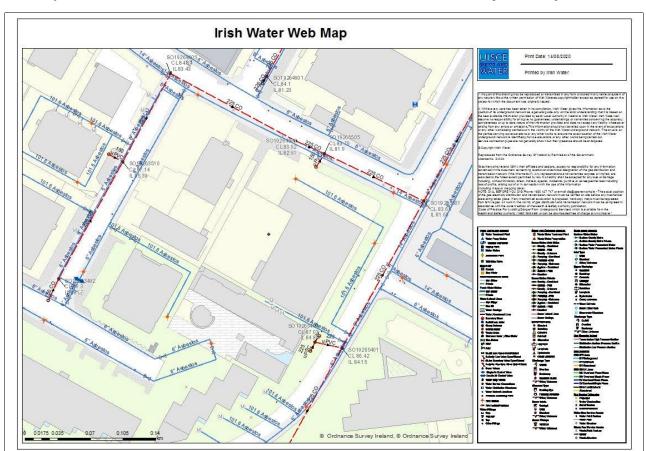
Re: CDS20000844 pre-connection enquiry - Subject to contract | Contract denied

Connection for Multi/Mixed Use Development of 500 apartment units at Avid, Sandyford, Co. Dublin

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Avid, Sandyford, Co. Dublin (the **Premises**). Based upon the details you have provided with your preconnection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>
Water Connection	Feasible without infrastructure upgrade by Irish Water
Wastewater Connection	Feasible without infrastructure upgrade by Irish Water
	SITE SPECIFIC COMMENTS
Water Connection	New 150mm ID new main to connect to the existing 6" AC. Connection main will have a bulk meter installed along it. There are Irish Water pipes within and in close proximity of the site boundaries (please find attached Irish Water GIS record of the area as a general guide only). The Developer will be required to survey the site to determine the exact location of the pipes. Any trial investigations should be carried out with the agreement and in the presence of the Local Authority Inspector. You are advised that structures or works over or in close proximity to Irish Water infrastructure that will inhibit access for maintenance or endanger structural or functional integrity of the infrastructure are not allowed.


Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

IW-HP-

	Separation distances between the Irish Water infrastructure and proposed structures, other services, trees, etc. have to be in accordance with the Irish Water Codes of Practice and Standard Details.
	If you wish to divert the asset to facilitate the development, you must have entered into a diversion agreement prior to commencing. Prior to submitting your planning application, you are required to submit these detailed design proposals to Irish Water Diversion Team via email address diversions@water.ie for review and approval.
Wastewater Connection	Connection has to be to the foul sewer on Arkle Road (MH: SO19264601), see map attached for location.
Strategic Housing Development:	
Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore:	
 A. In advance of submitting your full application to An Bord Pleanála for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services. B. You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed and appropriate connection fee paid at a later date. 	

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

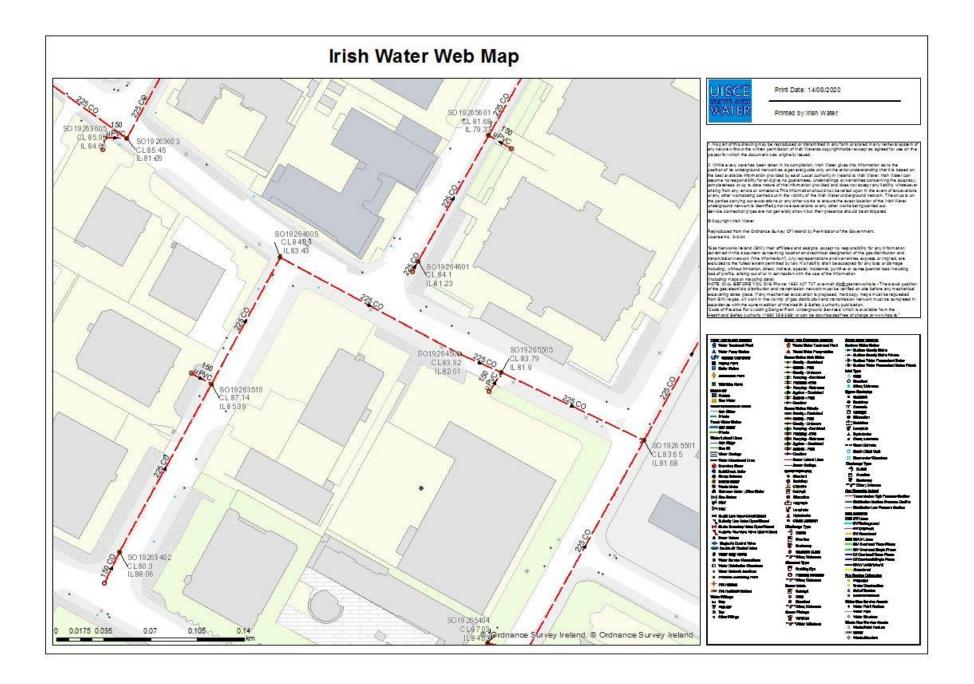
The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.


- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Deirdre Ryan from the design team on 022 54620 or email deiryan@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

M Bruge

Maria O'Dwyer Connections and Developer Services

Appendix L - Irish Water Statement of Design Acceptance

Project reference: PR-461030

Dara Magee Adelphi Plaza, George's Street Upper Dun Laoghaire Dublin A96T927

21 October 2020

Re: Design Submission for Avid,, Sandyford, Co. Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS20000844

Dear Dara Magee,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Alvaro Garcia Email: agarcia@water.ie

Yours sincerely,

M Buye

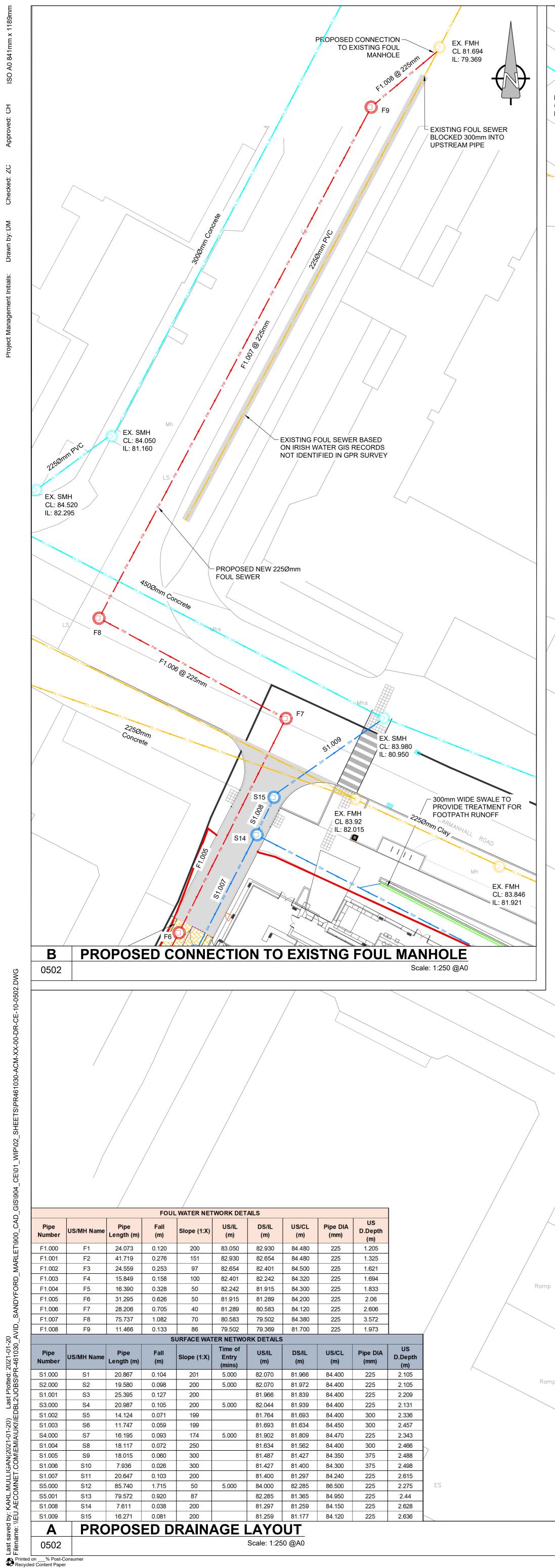
Maria O'Dwyer Connections and Developer Services

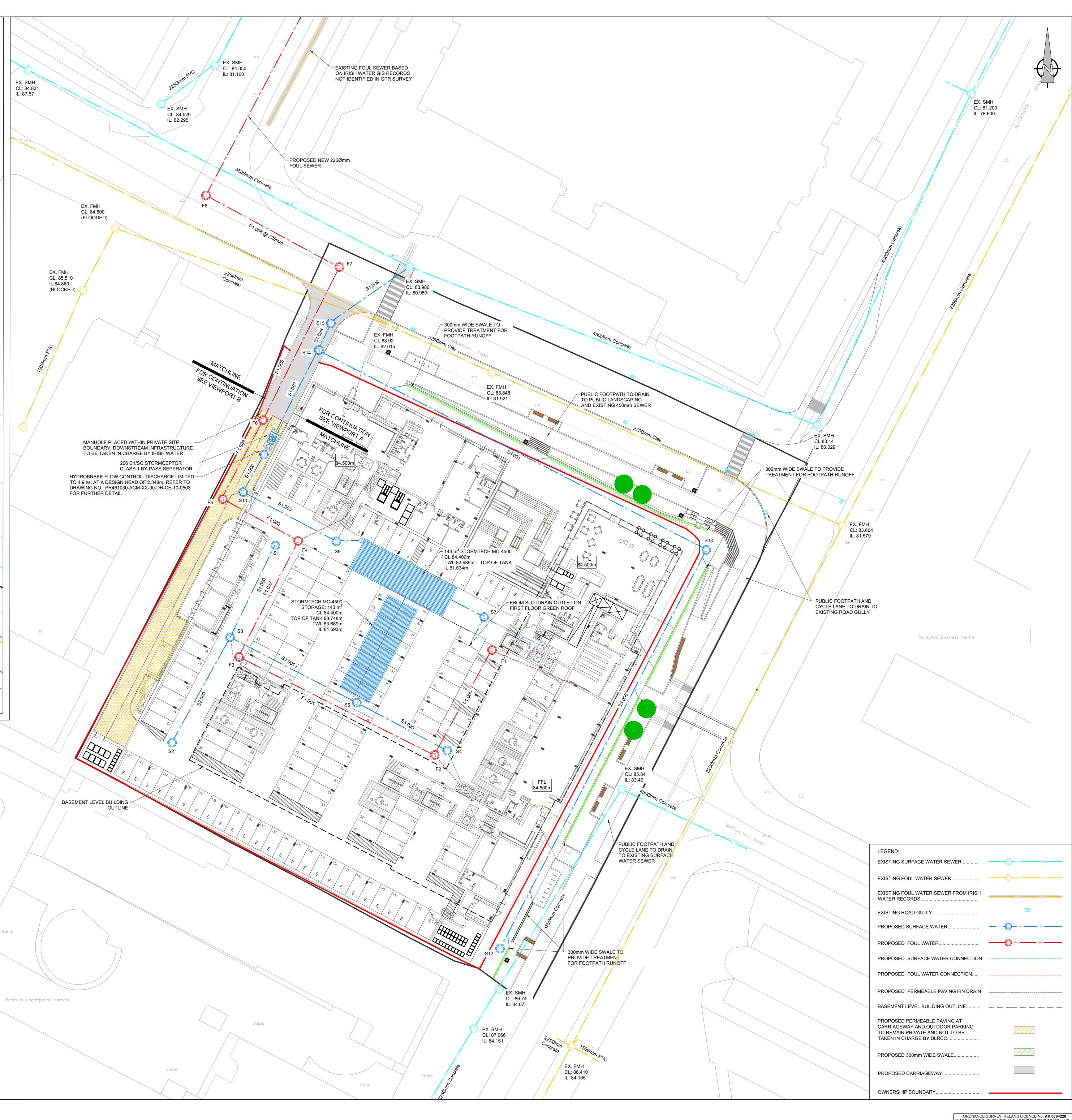
Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Appendix A


Document Title & Revision


- PR461030-ACM-XX-00-DR-CE-10-0502
- PR461030-ACM-XX-00-DR-CE-10-2701
- Foul long sections

For further information, visit <u>www.water.ie/connections</u>

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

PROJECT

PROPOSED STRATEGIC HOUSING DEVELOPMENT AT CARMANHALL ROAD, SANDYFORD INDUSTRIAL ESTATE, DUBLIN 18

CLIENT

ATLAS GP LTD

CONSULTANT

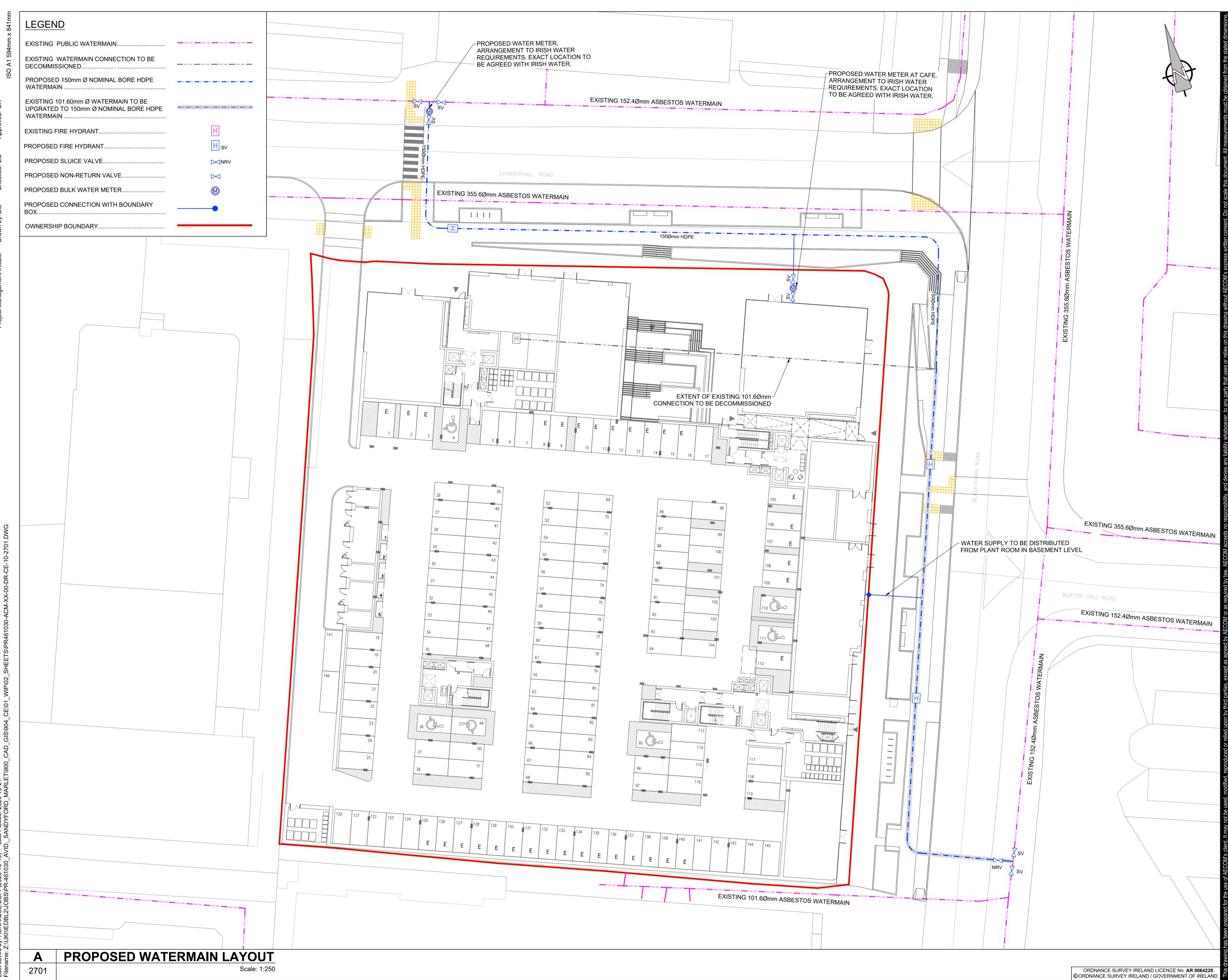
AECOM

4th Floor Adelphi Plaza, George's Street Upper, Dun Laoghaire, Co Dublin Tel:+353 (0)1 2383100 Fax:+353(0)1 23831 www.aecom.com

NOTES

- . THIS DRAWING IS TO BE READ IN CONJUNCTION WITH A OTHER RELEVANT ARCHITECTURAL AND ENGINEERIN DRAWINGS, ANY DISCREPANCIES, ERRORS OR OMISSION TO BE BROUGHT TO THE ATTENTION OF THE DESIGNER.
- 2. ALL DIMENSIONS TO BE CHECKED BY THE CONTRACTOR (SITE PRIOR TO COMMENCEMENT OF WORKS. 3. AECOM LIMITED TO BE INFORMED BY THE CONTRACTOR (
- ANY DISCREPANCIES PRIOR TO THE COMMENCEMENT (WORKS ON SITE. 4. DIMENSIONS OF ALL BOUNDARIES AND ADJOINING ROAL
- TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT (WORKS 5. DO NOT SCALE, ALL MEASUREMENTS AND COORDINATE
- TO BE CHECKED ON SITE. 6. THE PROPOSED SURFACE WATER SEWERS SHALL [CONSTRUCTED IN ACCORDANCE WITH THE SPECIFICATIC OF SECTION 3 OF "RECOMMENDATIONS FOR SI" DEVELOPMENT WORKS FOR HOUSING AREA (DEPARTMENT OF ENVIRONMENT & LOCAL GOVERNME) 1998) AND IRISH WATER STANDARD DETAILS. . THE LOCATION & DEPTH OF SERVICES TO BE CHECKED (
- SITE PRIOR TO COMMENCING ANY WORKS. 3. MANHOLE COVERS AND FRAMES IN PUBLICLY ACCESSIBI AREAS SHALL BE HEAVY DUTY CAST IRON, CLASS D4(DOUBLE SEALED AND LOCKABLE TYPE COMPLYING WI BS EN 124:2015. 9. GULLY GRATINGS & FRAMES SHALL COMPLY WITH BS E
- 124:2015. 10. EXISTING INVERT LEVELS TO BE VERIFIED ON SITE BEFOF COMMENCING CONSTRUCTION. 11.SURFACE WATER & FOUL SEWER PIPES LESS THAN 1.2 BELOW THE ROAD SURFACE OR LESS THAN 0.9m NON-TRAFFICKED FOOTPATHS AND LANDSCAPE ARE/ (WITH AN ABSOLUTE MINIMUM DEPTH OF COVER ABO) THE EXTERNAL CROWN OF THE PIPE Ø750mm) SHALL [PROTECTED FROM DAMAGE BY PROVIDING MINIMUM 150m
- THICK CONCRETE C16/20 HAUNCH IN ACCORDANCE WITH EN 12620. 12. ATTENUATION PROPOSALS SHALL BE IN ACCORDAN(WITH THE REQUIREMENTS OF THE LOCAL AUTHORITY. V SURVEY TO BE CONDUCTED PRIOR COMMENCEMENT OF ANY WORKS TO DETERMINE THE CONDITION AND VERIFY LEVELS OF THE EXISTING FOL AND SURFACE WATER PIPES/ MANHOLES. AN SUB-STANDARD OR DEFECTIVE ELEMENTS OF TH EXISTING PIPES/MANHOLES TO BE REPORTED AN
- CORRECTED 14. ALL SURFACE WATER DRAINAGE DETAILS TO BE ACCORDANCE WITH THE GREATER DUBLIN STRATEG DRAINAGE STUDY AND THE GREATER DUBLIN REGION CODE OF PRACTICE FOR DRAINAGE WORKS. 15. ALL FOUL WATER DETAILS TO BE IN ACCORDANCE WITH
- THE IRISH WATER INFRASTRUCTURE STANDARD DETAILS AND CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE. 16. MANHOLES AND PIPES TO BE DESIGNED TO PREVENT
- UPLIFT FROM GROUNDWATER AT DETAILED DESIGN STAG

ISSUE/REVISION


В	20.01.2021	ISSUED FOR INFORMATION
А	16.06.2020	DRAFT STAGE 2 PRE-APP
I/R	DATE	DESCRIPTION

PROJECT NUMBER 60626107 SHEET TITLE PROPOSED

DRAINAGE LAYOUT

SHEET NUMBER PR461030-ACM-XX-00-DR-CE-10-05

©ORDNANCE SURVEY IRELAND / GOVERNMENT OF IRELANI

PROJECT

PROPOSED STRATEGIC HOUSING DEVELOPMENT AT CARMANHALL ROAD, SANDYFORD INDUSTRIAL ESTATE, DUBLIN18

CLIENT

ATLAS GP LTD

CONSULTANT

AECOM 4th Floor Adelphi Plaza, George's Street Upper, Dun Laoghaire, Co Dublin Tel:+353 (0)1 2383100 Fax:+353(0)1 2383199 www.aecom.com

NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ARCHITECTURAL AND ENGINEERING DRAWINGS, ANY DISCREPANCIES, ERRORS OR OMISSIONS TO BE BROUGHT TO THE ATTENTION OF THE DESIGNER.
- . ALL DIMENSIONS TO BE CHECKED BY THE CONTRACTOR ON SITE PRIOR TO COMMENCEMENT OF WORKS. AECOM LIMITED TO BE INFORMED BY THE CONTRACTOR OF
- ANY DISCREPANCIES PRIOR TO THE COMMENCEMENT OF WORKS ON SITE. . DIMENSIONS OF ALL BOUNDARIES AND ADJOINING ROADS
- TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS. 5. DO NOT SCALE, ALL MEASUREMENTS AND COORDINATES TO BE CHECKED ON SITE.
- 3. THE DEVELOPMENT SHALL HAVE A BULK WATER METER (EXACT LOCATION TO BE AGREED WITH IRISH WATER) IN ACCORDANCE WITH IRISH WATER CODE OF PRACTICE SECTION 3.15.4.
- . EACH HOUSE UNIT SHALL HAVE AN APPROVAL BOUNDARY BOX (REFER TO APPENDIX A OF THE IRISH WATER CODE OF PRACTICE FOR WATER INFRASTRUCTURE) WITH INTEGRAL STOPCOCK AND SUITABLE FOR THE RECEPTION OF A WATER METER (REFER TO IRISH WATER CODE OF PRACTICE FOR WATER INFRASTRUCTURE SECTION 3.14).
- . ALL PROPERTIES SHALL HAVE METERS INSTALLED INTERNALLY WITHIN THE PREMISES IN ACCORDANCE WITH THE BUILDING CONTROL AUTHORITY'S REQUIREMENTS AND SUBJECT TO REVIEW BY IRISH WATER AS PER IRISH WATER CODE OF PRACTICE FOR WATER INFRASTRUCTURE SECTION 3.15.2.
- . ALL PROPOSED WATERMAIN PIPEWORK TO BE HDPE WITH MINIMUM PE80 RATING IN ACCORDANCE WITH IRISH WATER CODE OF PRACTICE FOR WATER INFRASTRUCTURE. 10. THE MINIMUM PIPE DIAMETER PROPOSED IS 100mm.
- 11. ALL WATERMAINS WILL HAVE A MINIMUM COVER OF 900mm. ALL SERVICE PIPES CONNECTING PROPERTIES WILL HAVE MINIMUM COVER OF 750mm. 2. HYDRANTS SHALL BE DOUBLE FLANGED DRILLED TO PN16
- AND SHALL COMPLY WITH BS EN 14339, IS EN 1074 PART 6 AND 135 750. REFER TO IRISH WATER CODE OF PRACTICE FOR WATER INFRASTRUCTURE SECTION 3.16.5. 3. SLUICE VALVES HAVE BEEN PROVIDED SO THAT INDIVIDUAL
- SECTIONS CAN BE ISOLATED & WILL COMPLY TO BS 5163. THE DEPTH OF THE SLUICE VALVE SPINDLE CAP BELOW FINISHED GROUND WILL NOT EXCEED 300mm. 4. ALL WATERMAIN DETAILS TO BE IN ACCORDANCE WITH THE
- IRISH WATER INFRASTRUCTURE STANDARD DETAILS AND CODE OF PRACTICE FOR WATER INFRASTRUCTURE. 5. THERE IS A MINIMUM OF 300mm CLEARANCE BETWEEN THE EXISTING AND PROPOSED WATERMAINS WHERE THEY CROSS AS PER SECTION 3.6 OF IRISH WATER CODE OF

ISSUE/REVISION

PRACTICE.

2	21.10.2020	UPDATED FOR IRISH WATER
1	19.10.2020	REPONSE TO IRISH WATER
0	17.08.2020	STAGE 2 PRE-APP ISSUE
Α	16.06.2020	DRAFT STAGE 2 PRE-APP
I/R	DATE	DESCRIPTION

PROJECT NUMBER

60626107

SHEET TITLE

PROPOSED WATERMAIN LAYOUT

SHEET NUMBER

PR461030-ACM-XX-00-DR-CE-10-2701

AECOM		Page 1
Midpoint	Proposed SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Micro
Date 21/09/2020 11:53	Designed by Dara Magee	Drainage
File SANDYFORD SHD STAGE 2.MDX	Checked by Marc O'Dowd	Diamage
Innovyze	Network 2019.1	I

MH Name	Fl	F2	F3
Hor Scale 1000			
noi scale 1000			
Ver Scale 200			
Datum (m)79.000			
PN	F1.000	F1.001	
Dia (mm)	225	225	
Slope (1:X)	167.2	166.4	
	.480	.480	.500
Cover Level (m)	4.4	4.4	4.5
	8	8	8
	00 00	20	707
Invert Level (m)	<u>اب</u> ق	٥.	•
	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	8 2
Length (m)	24.073	41.427	

MH Name	F7 F8
Hor Scale 1000 Ver Scale 200	
Datum (m)79.000	
PN	F1.006
Dia (mm)	225
Slope (1:X)	200.0
Cover Level (m)	84.180
Invert Level (m)	82.275
Length (m)	20.080
	· · ·
©	1982-2019 Innovyze

AECOM		Page 2
Midpoint	Proposed SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Mirro
Date 21/09/2020 11:53	Designed by Dara Magee	Dcainago
File SANDYFORD SHD STAGE 2.MDX	Checked by Marc O'Dowd	Diamage
Innovyze	Network 2019.1	•

MH Name	F3		F4	F5	F6	F7
Hor Scale 1000 Ver Scale 200						
Datum (m)79.000						
PN	F	1.002	F1.003	F1.004	F1.005	
Dia (mm)		225	225	225	225	
Slope (1:X)		199.3	201.4	199.7	200.0	
Cover Level (m)	84.500		84.320	84.300	84.180	84.180
Invert Level (m)	82.707	82.580	82.580 82.515	5·2.5	82.365 82.275 82.275	
Length (m)	2	5.306	13.091	29.948	18.039	

MH Name	F8				F
Hor Scale 1000 Ver Scale 200					
Datum (m)77.000	F1.007				
Dia (mm)	225				
Slope (1:X)	35.0		-		
Cover Level (m)	8 8 33 0 32.0		81.700		81.694
Invert Level (m)	82.174	060.67	79.990	79.688	
	76.455				

Appendix M – Wastewater Network Calculations

AECOM		Page 1
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Mirro
Date 17/02/2021 17:16	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3	Checked by Brendan Mitchell	Diamage
Innovyze	Network 2020.1	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)0Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.200Flow Per Person (1/per/day)165.00Maximum Backdrop Height (m)1.500Persons per House2.70Min Design Depth for Optimisation (m)1.200Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor6.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Base Flow (1/	′s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F1.000	24.073	0.120	200.6	0.000	140	C	0.0	1.500	0	225	Pipe/Conduit	ð
F1.001	41.719	0.276	151.1	0.000	110	C	0.0	1.500	0	225	Pipe/Conduit	Ū.
F1.002	24.559	0.253	97.1	0.000	60	C	0.0	1.500	0	225	Pipe/Conduit	-
F1.003	15.849	0.158	100.0	0.000	118	C	0.0	1.500	0	225	Pipe/Conduit	
F1.004	16.390	0.328	50.0	0.000	0	C	0.0	1.500	0	225	Pipe/Conduit	di 📅
F1.005	28.207	0.261	108.1	0.000	0	C	0.0	1.500	0	225	Pipe/Conduit	e
F1.006	27.901	0.772	36.1	0.000	0	C	0.0	1.500	0	225	Pipe/Conduit	-
F1.007	78.475	1.420	55.3	0.000	0	C	0.0	1.500	0	225	Pipe/Conduit	ef 👘
F1.008	11.466	0.092	124.6	0.000	0	C	0.0	1.500	0	225	Pipe/Conduit	0

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)		Cap (1/s)	Flow (l/s)	
F1.000	83.050	0.000	0.0	140	0.0	56	0.56	0.81	32.2	4.3	
F1.001	82.930	0.000	0.0	250	0.0	70	0.74	0.93	37.1	7.7	
F1.002	82.654	0.000	0.0	310	0.0	70	0.92	1.17	46.3	9.6	
F1.003	82.401	0.000	0.0	428	0.0	83	0.99	1.15	45.6	13.2	
F1.004	82.242	0.000	0.0	428	0.0	69	1.28	1.63	64.6	13.2	
F1.005	81.915	0.000	0.0	428	0.0	85	0.97	1.10	43.9	13.2	
F1.006	81.654	0.000	0.0	428	0.0	64	1.44	1.91	76.1	13.2	
F1.007	80.882	0.000	0.0	428	0.0	71	1.23	1.55	61.5	13.2	
F1.008	79.462	0.000	0.0	428	0.0	88	0.92	1.03	40.9	13.2	
	ፑፖ	ee Fla	owing Outf	- all T	Netaila	for H	'oul -	Mair			
	L T	SE LTC	JWIIIG OULI		Jecalls	TOT L	our -	mail	-		

Outfall Pipe Number		C. Level (m)			-,-	W (mm)	
F1.008	F	81.694	79.370	79.369	0	0	
	©19	982-2020	Innovy	ze			

AECOM		Page 2
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Micro
Date 17/02/2021 17:16	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3	Checked by Brendan Mitchell	Diamage
Innovyze	Network 2020.1	

Simulation Criteria for Foul - Main

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.000Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (1/s)0.000Output Interval (mins)1

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Summer
Return Period (years)	100	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	17.800	Storm Duration (mins) 30
Ratio R	0.275	

AECOM		Page 1
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Mirro
Date 17/02/2021 17:17	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3	Checked by Brendan Mitchell	Diamage
Innovyze	Network 2020.1	•

MH Name	F6			F3	F2	F1	
Hor Scale 1500 Ver Scale 200							
Datum (m)79.000							
PN				F1.002	F1.001	F1.000	
Dia (mm)				225	225	225	
Slope (1:X)				97.1	151.1	200.6	
Cover Level (m)	84.200	84.300	- T	84.500	84.480	84.480	
Invert Level (m)		• •	82.242 82.401			82.930 83.050	
Length (m)				24.559	41.719	24.073	

MH Name	F9	F	3 F7	F6	
Hor Scale 1500 Ver Scale 200 Datum (m)77.000					
PN		F1.007	F1.006	F1.005	
Dia (mm)		225	225	225	
Slope (1:X)		55.3	36.1	108.1	
Cover Level (m)	81.700	α 4 C C C	•	84.200	
Invert Level (m)		7 9.462		81.654	
		78.475	27.901	28.207	

©1982-2020 Innovyze

AECOM		Page 2
Midpoint	Sandyford SHD,	
Alencon Link	Carmanhall Road, Sandyford	
Basingstoke, RG21 7PP	Dublin 18.	Mirro
Date 17/02/2021 17:17	Designed by Dara Magee	Drainage
File Sandyford SHD Stage 3	Checked by Brendan Mitchell	Diamage
Innovyze	Network 2020.1	

MH Name	F	
		T
Hor Scale 1500		
Ver Scale 200		
Datum (m)76.000		
PN		
Dia (mm)		
Slope (1:X)		
	694 700	
Cover Level (m)		
	81 81	
	N 0	
Invert Level (m)	.370	
	79 79	
Length (m)		

©1982-2020 Innovyze

Appendix N - Tri Partite Response to An Bord Pleanála

Your Ref: ABP-307978-20 Our Ref: CDS20000844

An Bord Pleanála, 64 Marlborough Street, Dublin 1

18th November 2020

Uisce Éireann Bosca OP 6000 Balle Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

Dear Sir/ Madam,

Re: Strategic Housing Development – 438 no. Build to Rent apartments, childcare facility and associated site works. Former Avid Technology, Carmanhall Road, Sandyford Industrial Estate, Dublin 18.

Irish Water has received notification of Atlas GP Limited request to enter into consultations under Section 5 of the Planning and Development (Housing) and Residential Tenancies Act 2016 in respect of the above-mentioned proposed development.

Irish Water has assessed and has issued a Confirmation of Feasibility for connection(s) to the Irish Water network(s) subject to the following;

In respect of Water:

The applicant has been advised that Irish Water records indicate existing Irish Water infrastructure within and in proximity of the site boundaries. The applicant is required to survey the site to determine the exact location(s) of this infrastructure and must engage with Irish Waters diversion section in regard to a diversions feasibility assessment. The outcome of this feasibility assessment must be agreed with IW ahead of progressing to SHD application to ensure adequate protection of existing assets and to ensure appropriate separation distances can be achieved as per IW standards codes and practices. Any trial investigations should be carried out with the agreement and presence of a Local Authority/Irish Water Inspector.

General observations;

All development is to be carried out in compliance with Irish Waters Standards Codes and Practices and that design layouts for the development proposal have been submitted to Irish Water and that a Statement of Design Acceptance has been issued to the applicant by Irish Water ahead of any SHD Application.

Where any proposals by the applicant to build over or divert existing water or wastewater services the applicant is required to submit details to Irish Water for assessment of feasibility and have written confirmation of feasibility of diversion(s) from Irish Water ahead of any SHD Application to the board.

Queries relating to the observations above should be sent to planning@water.ie

PP. Ali Robinson

Yvonne Harris Connections and Developer Services **Appendix O – Diversion Confirmation of Feasibility**

Mr. Dara Magee, AECOM, Adelphi Plaza, George's Street Upper Dun Laoghaire Dublin A96T927

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

20 January 2021

Dear Mr Magee,

Re: Former Avid Technology Site, Carmanhall Road, Sandyford, Dublin 18 / Irish Water Diversion reference DIV20249 / Irish Water Connection reference CDS20000844. Subject to contract | Contract denied

Irish Water has reviewed your submission for the proposed diversion of the 101.6 mm (4 inch) Asbestos watermain at the former Avid Technology Site, Carmanhall Road, Sandyford, Dublin 18.

Based upon the details you have provided in your drawing PR461030-ACM-XX-00-DR-CE-10-2701 and as assessed by Irish Water, we wish to advise you that, subject to valid agreements being put in place, the proposal can be facilitated.

You are advised that this correspondence does not constitute an agreement in whole or in part to build near any Irish Water infrastructure and is provided subject to an associated Diversion and/or Self Lay Connection Agreement being executed at a later date. Please engage with Irish Water again in relation to this matter at such time planning permission has been granted for the proposed development at the site.

If you have any further questions, please contact Brendan Kearney from the diversions team on 0871016233 or email <u>brkearney@water.ie</u>. For further information, visit <u>www.water.ie/connections.</u>

Yours sincerely,

Monne Maeeis

Yvonne Harris Head of Customer Operations

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Brendan Murphy, Michael G. O'Sullivan

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363